Displaying similar documents to “Multi-scale Modelling for Threshold Dependent Differentiation”

A Mathematical Model of Cancer Stem Cell Lineage Population Dynamics with Mutation Accumulation and Telomere Length Hierarchies

G. Kapitanov (2012)

Mathematical Modelling of Natural Phenomena

Similarity:

There is evidence that cancer develops when cells acquire a sequence of mutations that alter normal cell characteristics. This sequence determines a hierarchy among the cells, based on how many more mutations they need to accumulate in order to become cancerous. When cells divide, they exhibit telomere loss and differentiate, which defines another cell hierarchy, on top of which is the stem cell. We propose a mutation-generation model, ...

Optimisation of time-scheduled regimen for anti-cancer drug infusion

Claude Basdevant, Jean Clairambault, Francis Lévi (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Similarity:

The chronotherapy concept takes advantage of the circadian rhythm of cells physiology in maximising a treatment efficacy on its target while minimising its toxicity on healthy organs. The object of the present paper is to investigate mathematically and numerically optimal strategies in cancer chronotherapy. To this end a mathematical model describing the time evolution of efficiency and toxicity of an oxaliplatin anti-tumour treatment has been derived. We then applied an optimal control...

Mathematical modeling of the competition between acquired immunity and cancer

Mikhail Kolev (2003)

International Journal of Applied Mathematics and Computer Science

Similarity:

In this paper we propose and analyse a model of the competition between cancer and the acquired immune system. The model is a system of integro-differential bilinear equations. The role of the humoral response is analyzed. The simulations are related to the immunotherapy of tumors with antibodies.