A Team Approach to Undergraduate Research in Biomathematics: Balance Control

J. Milton; A. Radunskaya; W. Ou; T. Ohira

Mathematical Modelling of Natural Phenomena (2011)

  • Volume: 6, Issue: 6, page 260-277
  • ISSN: 0973-5348

Abstract

top
The question, how does an organism maintain balance? provides a unifying theme to introduce undergraduate students to the use of mathematics and modeling techniques in biological research. The availability of inexpensive high speed motion capture cameras makes it possible to collect the precise and reliable data that facilitates the development of relevant mathematical models. An in–house laboratory component ensures that students have the opportunity to directly compare prediction to observation and motivates the development of projects that push the boundaries of the subject. The projects, by their nature, readily lend themselves to the formation of inter–disciplinary student research teams. Thus students have the opportunity to learn skills essential for success in today’s workplace including productive team work, critical thinking, problem solving, project management, and effective communication.

How to cite

top

Milton, J., et al. "A Team Approach to Undergraduate Research in Biomathematics: Balance Control." Mathematical Modelling of Natural Phenomena 6.6 (2011): 260-277. <http://eudml.org/doc/222388>.

@article{Milton2011,
abstract = {The question, how does an organism maintain balance? provides a unifying theme to introduce undergraduate students to the use of mathematics and modeling techniques in biological research. The availability of inexpensive high speed motion capture cameras makes it possible to collect the precise and reliable data that facilitates the development of relevant mathematical models. An in–house laboratory component ensures that students have the opportunity to directly compare prediction to observation and motivates the development of projects that push the boundaries of the subject. The projects, by their nature, readily lend themselves to the formation of inter–disciplinary student research teams. Thus students have the opportunity to learn skills essential for success in today’s workplace including productive team work, critical thinking, problem solving, project management, and effective communication. },
author = {Milton, J., Radunskaya, A., Ou, W., Ohira, T.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {inverted pendulum; time-delay; noise; dimension reduction; pursuit; undergraduate; education},
language = {eng},
month = {10},
number = {6},
pages = {260-277},
publisher = {EDP Sciences},
title = {A Team Approach to Undergraduate Research in Biomathematics: Balance Control},
url = {http://eudml.org/doc/222388},
volume = {6},
year = {2011},
}

TY - JOUR
AU - Milton, J.
AU - Radunskaya, A.
AU - Ou, W.
AU - Ohira, T.
TI - A Team Approach to Undergraduate Research in Biomathematics: Balance Control
JO - Mathematical Modelling of Natural Phenomena
DA - 2011/10//
PB - EDP Sciences
VL - 6
IS - 6
SP - 260
EP - 277
AB - The question, how does an organism maintain balance? provides a unifying theme to introduce undergraduate students to the use of mathematics and modeling techniques in biological research. The availability of inexpensive high speed motion capture cameras makes it possible to collect the precise and reliable data that facilitates the development of relevant mathematical models. An in–house laboratory component ensures that students have the opportunity to directly compare prediction to observation and motivates the development of projects that push the boundaries of the subject. The projects, by their nature, readily lend themselves to the formation of inter–disciplinary student research teams. Thus students have the opportunity to learn skills essential for success in today’s workplace including productive team work, critical thinking, problem solving, project management, and effective communication.
LA - eng
KW - inverted pendulum; time-delay; noise; dimension reduction; pursuit; undergraduate; education
UR - http://eudml.org/doc/222388
ER -

References

top
  1. D. Acheson. From Calculus to Chaos: An introduction to dynamics. Oxford University Press, New York (1998).  Zbl0911.00001
  2. A. Armenti, Jr., editor. The Physics of Sports. American Institute of Physics, New York (1992).  
  3. Y. Asai, Y. Tasaka, K. Nomura, T. Nomura, M. Casidio, P. Morasso A model of postural control in quiet standing: Robust compensation of delay–induced instability using intermittent activation of feedback control. PLoS ONE 4 (2009), e6169.  
  4. G. L. Baker, J. A. Blackburn. The pendulum: a case study in physics. Oxford University Press, New York, 2005.  Zbl1088.70001
  5. H. C. Berg. Random walks in biology. Princeton University Press, New Jersey (1993).  
  6. A. Bottaro, Y. Yasutake, T. Nomura, M. Casidio, P. Morasso. Bounded stability of the quite standing position: An intermittent control model. Human Movement Science27 (2008), 473–495.  
  7. R. Bormann, J. L. Cabrera, J. G. Milton, C. W. Eurich. Visuomotor tracking on a computer screen: An experimental paradigm to study dynamics of motor control. Neurocomputing58–60 (2004), 517-523.  
  8. J. Boulet, R. Balasubramiam, A. Daffertshofer, A. Longtin. Stochastic two-delay differential model of delayed visual feedback effects on postural dynamics. Phil. Trans. Roy. Soc. A368 (2010): 423-438.  Zbl1197.93161
  9. J. L. Cabrera, J. G. Milton. On–off intermittency in a human balancing task. Phys. Rev. Lett.89 (2002), 158702.  
  10. J. L. Cabrera, J. G. Milton. Human stick balancing: Tuning Lévy flights to improve balance control. CHAOS14 (2004): 691.  Zbl1080.92016
  11. J. L. Cabrera, R. Bormann, C. Eurich, T. Ohira, J. Milton. State–dependent noise and human balance control. Fluct. Noise Lett.4 (2004), L107-L118.  
  12. S. A. Campbell, S. Crawford, K. Morris. Friction and the inverted stabilization problem. J. Dyn. Syst. Meas. Control.130 (2008), 054502.  
  13. J. J. Chiel, R. D. Beer. The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. TINS20 (1997), 553–557.  
  14. T. Cluff, R. Balasubramania R.. Motor learning characterized by changing Lévy distributions. PLoS One4 (2009): e5998.  
  15. V. de Silva, J. B. Tenenbaum, J. C. Langford. A global geometric framework for nonlinear dimensionality reduction. Science290 (2000), 2319–2323.  
  16. T. M. H. Dijkstra, H. Katsumata, D. Sternad. The dialogue between data and model: passive stability and relaxation behavior in a ball bouncing task. Nonlinear Studies11 (2004), 319–344.  Zbl1049.93055
  17. B. Ermentrout. Simulating, Analyzing, and Animating Dynamical Systems. SIAM, Philadelphia (2002).  Zbl1003.68738
  18. C. W. Eurich, J. G. Milton JG. Noise-induced transitions in human postural sway. Phys. Rev. E54 (1996): 6681-6684.  
  19. C. W. Eurich, K. Pawelzik. Optimal control yields power laws. In Artificial Neural Networks: Formal Models and Their Applications, Springer Lecture Notes in Computer Science Vol. 3697, edited by W. Duch, J. Kacprzyk, E. Oja and S. Zadronzny (Springer–Verlag, Berlin, 2005), pp. 365–370.  
  20. P. Foo, J. A. S. Kelso, G. D. de Guzman. Functional stabilization of fixed points: Human pole balancing using time to balance information. J. Exp. Psychol. Hum. Percept. Perform.26 (2000), 1281-1297.  
  21. J. Guckenheimer. A robust hybrid stabilization strategy for equilibria. IEEE Trans. Automatic Control40 (1995), 321–326.  Zbl0825.93297
  22. T. Insperger. Stick balancing with reflex delay in case of parametric forcing. Commun. Nonlinear Sci. Numer. Simulat.16 (2011), 2160–2168.  Zbl1221.70044
  23. A. Kamimura, T. Ohira. Group chase and escape. New J. Physics12 (2010), 053013.  Zbl1308.49034
  24. T. A. Kuiken, L. A. Miller, R. D. Lipschutz, B. A. Lock, K. Stubblefield, P. D. Marasso, P. Zhou, G. A. Dumanian. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet369 (2007), 371–380.  
  25. A. D. Kuo. The six determinants of gait and the inverted pendulum analogy: A dynamic walking perspective. Hum. Mov. Sci.26 (2007), 617–656.  
  26. S. S. Lafon. Diffusion Maps and Geometric Harmonics. PhD thesis, Yale University, 2004.  
  27. M. Landry, S. A. Campbell, K. Morris, C. O. Aguilar. Dynamics of an inverted pendulum with delayed feedback control. SIAM J. Appl. Dyn. Sys.4 (2005), 333–351.  Zbl1170.93366
  28. D. B. Lockhart, L. H. Ting. Optimal sensorimotor transformations for balance. Nat. Neurosci.10 (2007), 1329–1336.  
  29. I. D. Loram, M. Lackie. Human balancing of an inverted pendulum: position control by small, ballistic–like, throw and catch movements. J. Physiol. (London)540 (2002), 1111-1124.  
  30. I. D. Loram, C. N. Maganaris, M. Lakie. Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. J. Physiol. (London)564 (2005), 295-311.  
  31. J. Maynard Smith. Mathematical Ideas in Biology. Cambridge University Press, New York (1968).  
  32. T. A. McMahon. Muscles, Reflexes and Locomotion. Princeton University Press, New Jersey (1984).  
  33. B. Mehta, S. Schaal. Forwards models in visuomotor control. J. Neurophysiol.88 (2002), 942–953.  
  34. J. G. Milton, S. S. Small, A. Solodkin. On the road to automatic: Dynamic aspects in the development of expertise. J. Clin. Neurophysiol.21 (2004), 134–143.  
  35. J. G. Milton, J. L. Cabrera, T. Ohira. Unstable dynamical systems: Delays, noise and control. Europhys. Lett. 83 (2008), 48001.  
  36. J. G. Milton, T. Ohira, J. L. Cabrera, R. M. Fraiser, J. B. Gyorffy, F. K. Ruiz, M. A. Strauss, E. C. Balch, P. J. Marin, J. L. Alexander. Balancing with vibration: A prelude for “drift and act” balance control. PLOS One4 (2009), e7427.  
  37. J. Milton, J. L. Cabrera, T. Ohira, S. Tajima, Y. Tonosaki, C. W. Eurich, S. A. Campbell. The time–delayed inverted pendulum: Implications for human balance control. Chaos19 (2009), 026110.  Zbl1309.92020
  38. J. Milton, J. L. Townsend, M. A. King, T. Ohira. Balancing with positive feedback: the case for discontinuous control. Phil. Trans. Roy. Soc. A367 (2009), 1181-1193.  Zbl1185.34119
  39. J. Milton, J. Gyorffy, J. L. Cabrera, T. Ohira. Amplitude control of human postural sway using Achilles tendon vibration. 16th US National Congress of Theoretical and Applied Mechanics (2010). State College, PA (USNCTAM2010–791).  
  40. J. G. Milton, A. E. Radunskaya, A. H. Lee, L. G. de Pillis, D. F. Bartlett. Team research at the biology–mathematics interface: Project management perspectives. CBE–Life Sciences Education9 (2010), 316-322.  
  41. J. Milton, P. Naik, C. Chan, S. A. Campbell. Indecision is neural decision making models. Math. Model. Nat. Phenom.5 (2010), 125–145.  Zbl05691732
  42. J. Milton, J. Lippai, R. Bellows, A. Blomberg, A. Kamimura, T. Ohira. Visuomotor tracking tasks with delayed pursuit and escape. 8th International Conference on Multibody Systems, Nonlinear Dynamics and Control (2011). Washington, D. C. (DETC2011-47312).  
  43. P. J. Nahin PJ. Chases and escapes: The mathematics of pursuit and evasion. Princeton University Press, Princeton, New Jersey (2007).  Zbl1154.91006
  44.  URIhttp://www.gnu.org/software/octave/
  45. T. Ohira, J. Milton. Delayed random walks: Investigating the interplay between noise and delays. In: Delay Differential Equations: Recent Advances and New Directions, edited by B. Balachandran, T. Kalmár–Nagy and D. E. Gilman, Springer–Verlag, New York, pp. 305–335 (2009).  
  46. F. Patzelt, M. Riegel, U. Ernst, K. Pawelzik. Self-organized critical noise amplification in human closed loop control. Front. Comp. Neurosci.1 (2007), Article 4, 1–9.  
  47. I. J. Pinter, R. von Swigchem, A. J. Knoek van Soet, L. A. Rozendaal. The dynamics of postural sway cannot be captured using a one-segment inverted pendulum model: A PCA on segment rotations during unperturbed stance. J. Neurophysiol.100 (2008), 3197–3208.  
  48. A. B. Pippard. The inverted pendulum. Eur. J. Physics8 (1987), 203–206.  
  49.  URIhttp://pydelay.sourceforge.net/
  50.  URIhttps://code.astraw.com/projects/PyUniversalLibrary/
  51.  URIhttp://www.sagemath.org/
  52.  URIhttp://www.scipy.org/
  53. S. H. Scott. Optimal feedback control and the neural basis of volitional motor control. Nature Rev, Neurosci.5 (2004), 534–546.  
  54. J. R. Stirling, M. S. Zakynthinaki. Stability and the maintenance of balance following a perturbation from quiet stance. Chaos14 (2004), 96–105.  Zbl1080.37097
  55. G. Stepan. Delay effects in the human sensory system during balancing. Phil. Trans. Roy. Soc. A367 (2009), 1195–1212.  Zbl1185.92010
  56. N. Stepp. Anticipation in feedback–delayed manual tracking tracking of a chaotic oscillator. Exp. Brain Res.198 (2009), 521–525.  
  57. A. Straw. An open–source library for realtime visual stimulus generation. Frontiers Neuroinformatics 11 (2008): doi: .  URI10.3389.neuro.11.004:2008
  58. A. D. Straw, M. H. Dickinson. Motmot, an open–source toolkit for realtime video acquisition and analysis. Source Code for Biology and Medicine (2010). doi: .  URI10.1186/1751-0473-4-5
  59. T. Vicsek. Closing in on evaders. Nature466 (2010), 43–44.  
  60. S. Vogel. Comparative Biomechanics: Life’s physical world. Princeton University Press, New Jersey (2003).  Zbl1037.92005
  61. H. U. Voss. Anticipating chaotic synchronization. Phys. Rev. E61 (2000), 5115–5119.  
  62. D. A. Winter, A. e. Patla, F. Prince, M. Ishac, K. Gielo–Perczak. Stiffness control in quiet standing. J. Neurophysiol.80 (1998), 1211-1221.  
  63. M. S. Zakynthinaki, J. M. Madera Milla, A. López de Durana, C. A. Cordent Martinez, G. Rodriguez Romo, M. Stillero Quintana, J. Samperd Molinuevo. Rotated balance in humans due to repetitive rotational movement. Chaos20 (2010), 013118.  Zbl1311.92032
  64. V. Zatsiorsky. Biomechanics in Sports: Performance enhancement and injury prevention. Blackwell Science, Malden, MA (2000).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.