Page 1

Displaying 1 – 14 of 14

Showing per page

A Team Approach to Undergraduate Research in Biomathematics: Balance Control

J. Milton, A. Radunskaya, W. Ou, T. Ohira (2011)

Mathematical Modelling of Natural Phenomena

The question, how does an organism maintain balance? provides a unifying theme to introduce undergraduate students to the use of mathematics and modeling techniques in biological research. The availability of inexpensive high speed motion capture cameras makes it possible to collect the precise and reliable data that facilitates the development of relevant mathematical models. An in–house laboratory component ensures that students have the opportunity...

Drugs in the Classroom: Using Pharmacokinetics to Introduce Biomathematical Modeling

G. A. Koch-Noble (2011)

Mathematical Modelling of Natural Phenomena

Pharmacokinetics is an excellent way to introduce biomathematical modeling at the sophomore level. Students have the opportunity to develop a mathematical model of a biological phenomenon to which they all can relate. Exploring pharmacokinetics takes students through the necessary stages of mathematical modeling: determining the goals of the model, deciphering between the biological aspects to include in the model, defining the assumptions of the model, and finally, building, analyzing, using, and...

Mathematical modeling of antigenicity for HIV dynamics

François Dubois, Hervé V.J. Le Meur, Claude Reiss (2010)

MathematicS In Action

This contribution is devoted to a new model of HIV multiplication motivated by the patent of one of the authors. We take into account the antigenic diversity through what we define “antigenicity”, whether of the virus or of the adapted lymphocytes. We model the interaction of the immune system and the viral strains by two processes. On the one hand, the presence of a given viral quasi-species generates antigenically adapted lymphocytes. On the other hand, the lymphocytes kill only viruses for which...

On Chemotaxis Models with Cell Population Interactions

Z. A. Wang (2010)

Mathematical Modelling of Natural Phenomena

This paper extends the volume filling chemotaxis model [18, 26] by taking into account the cell population interactions. The extended chemotaxis models have nonlinear diffusion and chemotactic sensitivity depending on cell population density, which is a modification of the classical Keller-Segel model in which the diffusion and chemotactic sensitivity are constants (linear). The existence and boundedness of global solutions of these models are discussed and...

On geodesics of phyllotaxis

Roland Bacher (2014)

Confluentes Mathematici

Seeds of sunflowers are often modelled by n ϕ θ ( n ) = n e 2 i π n θ leading to a roughly uniform repartition with seeds indexed by consecutive integers at angular distance 2 π θ for θ the golden ratio. We associate to such a map ϕ θ a geodesic path γ θ : > 0 PSL 2 ( ) of the modular curve and use it for local descriptions of the image ϕ θ ( ) of the phyllotactic map ϕ θ .

The Importance of Spatial Distribution of Stemness and Proliferation State in Determining Tumor Radioresponse

H. Enderling, D. Park, L. Hlatky, P. Hahnfeldt (2009)

Mathematical Modelling of Natural Phenomena

Tumor growth and progression is a complex phenomenon dependent on the interaction of multiple intrinsic and extrinsic factors. Necessary for tumor development is a small subpopulation of potent cells, so-called cancer stem cells, that can undergo an unlimited number of cell divisions and which are proposed to divide symmetrically with a small probability to produce more cancer stem cells. We show that the majority of cells in a tumor must indeed be non-stem cancer cells with limited life span and...

The Rothe method for the McKendrick-von Foerster equation

Henryk Leszczyński, Piotr Zwierkowski (2013)

Czechoslovak Mathematical Journal

We present the Rothe method for the McKendrick-von Foerster equation with initial and boundary conditions. This method is well known as an abstract Euler scheme in extensive literature, e.g. K. Rektorys, The Method of Discretization in Time and Partial Differential Equations, Reidel, Dordrecht, 1982. Various Banach spaces are exploited, the most popular being the space of bounded and continuous functions. We prove the boundedness of approximate solutions and stability of the Rothe method in L and...

Towards Sub-cellular Modeling with Delaunay Triangulation

G. Grise, M. Meyer-Hermann (2010)

Mathematical Modelling of Natural Phenomena

In this article a novel model framework to simulate cells and their internal structure is described. The model is agent-based and suitable to simulate single cells with a detailed internal structure as well as multi-cellular compounds. Cells are simulated as a set of many interacting particles, with neighborhood relations defined via a Delaunay triangulation. The interacting sub-particles of a cell can assume specific roles – i.e., membrane sub-particle, internal sub-particle, organelles, etc –,...

Uniqueness of Monotone Mono-stable Waves for Reaction-Diffusion Equations with Time Delay

W. Huang, M. Han, M. Puckett (2009)

Mathematical Modelling of Natural Phenomena

Many models in biology and ecology can be described by reaction-diffusion equations wit time delay. One of important solutions for these type of equations is the traveling wave solution that shows the phenomenon of wave propagation. The existence of traveling wave fronts has been proved for large class of equations, in particular, the monotone systems, such as the cooperative systems and some competition systems. However, the problem on the uniqueness of traveling wave (for a fixed wave speed)...

Currently displaying 1 – 14 of 14

Page 1