Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics

T. Stiehl; A. Marciniak-Czochra

Mathematical Modelling of Natural Phenomena (2012)

  • Volume: 7, Issue: 1, page 166-202
  • ISSN: 0973-5348

Abstract

top
The cancer stem cell hypothesis has evolved to one of the most important paradigms in biomedical research. During recent years evidence has been accumulating for the existence of stem cell-like populations in different cancers, especially in leukemias. In the current work we propose a mathematical model of cancer stem cell dynamics in leukemias. We apply the model to compare cellular properties of leukemic stem cells to those of their benign counterparts. Using linear stability analysis we derive conditions necessary and sufficient for expansion of malignant cell clones, based on fundamental cellular properties. This approach reveals different scenarios of cancer initiation and provides qualitative hints to possible treatment strategies.

How to cite

top

Stiehl, T., and Marciniak-Czochra, A.. "Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics." Mathematical Modelling of Natural Phenomena 7.1 (2012): 166-202. <http://eudml.org/doc/222399>.

@article{Stiehl2012,
abstract = {The cancer stem cell hypothesis has evolved to one of the most important paradigms in biomedical research. During recent years evidence has been accumulating for the existence of stem cell-like populations in different cancers, especially in leukemias. In the current work we propose a mathematical model of cancer stem cell dynamics in leukemias. We apply the model to compare cellular properties of leukemic stem cells to those of their benign counterparts. Using linear stability analysis we derive conditions necessary and sufficient for expansion of malignant cell clones, based on fundamental cellular properties. This approach reveals different scenarios of cancer initiation and provides qualitative hints to possible treatment strategies.},
author = {Stiehl, T., Marciniak-Czochra, A.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {multi-compartmental models; stem cell differentiation; environmental signaling; leukemia; cancer stem cells; leukemic stem cells; linear stability analysis},
language = {eng},
month = {1},
number = {1},
pages = {166-202},
publisher = {EDP Sciences},
title = {Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics},
url = {http://eudml.org/doc/222399},
volume = {7},
year = {2012},
}

TY - JOUR
AU - Stiehl, T.
AU - Marciniak-Czochra, A.
TI - Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics
JO - Mathematical Modelling of Natural Phenomena
DA - 2012/1//
PB - EDP Sciences
VL - 7
IS - 1
SP - 166
EP - 202
AB - The cancer stem cell hypothesis has evolved to one of the most important paradigms in biomedical research. During recent years evidence has been accumulating for the existence of stem cell-like populations in different cancers, especially in leukemias. In the current work we propose a mathematical model of cancer stem cell dynamics in leukemias. We apply the model to compare cellular properties of leukemic stem cells to those of their benign counterparts. Using linear stability analysis we derive conditions necessary and sufficient for expansion of malignant cell clones, based on fundamental cellular properties. This approach reveals different scenarios of cancer initiation and provides qualitative hints to possible treatment strategies.
LA - eng
KW - multi-compartmental models; stem cell differentiation; environmental signaling; leukemia; cancer stem cells; leukemic stem cells; linear stability analysis
UR - http://eudml.org/doc/222399
ER -

References

top
  1. J. Ablain, H. de The. Revisiting the differentiation paradigm in acute promyelocytic leukemia. Blood, 117 (2008), No. 22, 5795–5802.  
  2. M. Adimy, F. Crauste. Modeling and asymptotic stability of a growth factor- dependent stem cell dynamics model with distributed delay. Discrete Contin. Dyn. Syst. Ser. B, 8 (2007), No. 1, 19–38.  
  3. M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), No. 4, 1328–1352.  
  4. M. Adimy, F. Crauste, S. Ruan. Modelling hematopoiesis mediated by growth factors with applications to periodic hematological diseases. Bull. Math. Biol., 68 (2006), No. 8, 2321–2351.  
  5. M. Aglietta, W. Piacibello, F. Sanavio, A. Stacchini, F. Apra, M. Schena, C. Mossetti, F. Carnino, F. Caligaris-Cappio, F. Gavosto. Kinetics of human hemopoietic cells after in vivo administration of granulocyte-macrophage colony-stimulating factor. J. Clin. Invest., 83 (1989), No. 2, 551–557.  
  6. T. Alarcon, P. Getto, A. Marciniak-Czochra, MdM. Vivanco. A model for stem cell population dynamics with regulated maturation delay. Discr. Cont. Dyn. Systems B (2011), to appear.  
  7. L. Andrey. Chaos in cancer. Med. Hypotheses, 28 (1989), No. 3, 143–144.  
  8. O. Arino, M. Kimmel. Stability analysis of models of cell production systems. Math. Modelling, 7 (1986), No. 9-12, 1269–1300.  
  9. M. Baum, MA. Chaplain, AR. Anderson, M. Douek, JS. Vaidya. Does breast cancer exist in a state of chaos ?Eur. J. Cancer, 35 (1999), No. 6, 886–891.  
  10. R. Bejar, R. Levine, and B. L. Ebert. Unraveling the molecular pathophysiology of myelodysplastic syndromes. J. Clin. Oncol., 29 (2011), No. 5, 504–514.  
  11. J. Belair, MC. Mackey, J. M. Mahaffy. Age-structured and two-delay models for erythropoiesis. Math. Biosci., 128 (1995), No. 1-2, 317–346.  
  12. C. Bellan, L. Stefano, dF. Giulia, E. A. Rogena, L. Lorenzo. Burkitt lymphoma versus diffuse large B-cell lymphoma : a practical approach. Hematol. Oncol., 28 (2010), No. 2, 53–56.  
  13. MT. Bocker, I. Hellwig, A. Breiling, V. Eckstein, A. D. Ho, F. Lyko. Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood, 117 (2011), No. 19 : e182–e189.  
  14. V. Bogner, L. Keil, KG. Kanz, C. Kirchhoff, B. A. Leidel, W. Mutschler, P. Biberthaler. Very early posttraumatic serum alterations are signiïňĄcantly associated to initial massive RBC substitution, injury severity, multiple organ failure and adverse clinical outcome in multiple injured patients. Eur. J. Med. Res., 14 (2009), No. 7, 284–291.  
  15. D. Bonnet, J. E. Dick. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat. Med., 3 (1997), No. 7, 730–737.  
  16. J. Bryan, E. Jabbour, H. Prescott, G. Garcia-Manero, J. P. Issa, H. Kantarjian. Current and future management options for myelodysplastic syndromes. Drugs, 70 (2010), No. 11, 1381– 1394.  
  17. EC. Buss, A. D. Ho. Leukemia stem cells. Int. J. Cancer., 129 (2011), No. 10, 2328–2336.  
  18. SY. Chen, YC. Huang, SP Liu, FJ Tsai, WC Shyu, SZ Lin. An overview of concepts for cancer stem cells. Cell Transplant., 20 (2011), No. 1, 113–120.  
  19. BD. Cheson. Standard and low-dose chemotherapy for the treatment of myelodysplastic syndromes. Leuk. Res., Suppl.1 (1998), S17–S21.  
  20. H. Clevers. The cancer stem cell : premises, promises and challenges. Nat Med., 17 (2011), No. 3, 313–319.  
  21. D.S. Coffey. Self-organization, complexity and chaos : the new biology for medicine. Nat. Med., 4 (1998), No. 8, 882–885.  
  22. C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis –I. periodic chronic myelogenous leukemia. J. Theor. Biol., 237 (2005), No. 2, 117–132.  
  23. D. Dingli, JM. Pacheco. Stochastic dynamics and the evolution of mutations in stem cells. BMC Biol., 9 :41 (2011).  
  24. M. Doumic-Jauffret, PS. Kim, B. Perthame. Stability analysis of a simplied yet complete model for chronic myelogenous leukemia. Bull. Math. Biol., 72 (2010), No. 7, 1732–1759.  
  25. M. Doumic-Jauffret, A. Marciniak-Czochra, B. Perthame, JP. Zubelli. A Structured Population Model of Cell Differentiation. SIAM J. Appl. Math., 71 (2011), 1918–1940.  
  26. P. Fenaux, GJ. Mufti, E. Hellstrom-Lindberg, V. Santini, C. Finelli, A. Giagounidis, R. Schoch, N. Gattermann, G. Sanz, A. List, SD. Gore, JF. Seymour, JM. Bennett, J. Byrd, J. Backstrom, L. Zimmerman, D. McKenzie, C. Beach, LR. Silverman; International Vidaza High-Risk MDS Survival Study Group. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes : a randomised, open-label, phase III study. Lancet Oncol., 10 (2009), No. 3, 223–232.  
  27. C. Foley, S. Bernard, MC. Mackey. Cost-effective G-CSF therapy strategies for cyclical neutropenia : Mathematical modelling based hypotheses. J. Theor. Biol., 238 (2006), No. 4, 754–763.  
  28. W. Fried. Erythropoietin and erythropoiesis. Exp. Hematol., 37 (2009), No. 9, 1007–1015.  
  29. FR. Gantmacher. The theory of matrices 2. Chelsea Publishing, New York, 1964.  
  30. P. Getto, A. Marciniak-Czochra, Y. Nakata, MdM. Vivanco. Global dynamics of two compartment models for cell production systems with regulatory mechanisms. (2011), submitted.  
  31. J. Guckenheimer, P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, New York, 2002.  
  32. H. Haeno, RL. Levine, DG. Gilliland, F. Michor. A progenitor cell origin of myeloid malignancies. PNAS, 106 (2009), No. 39, 16616–16621.  
  33. KJ. Hope, L. Jin, JE. Dick. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat. Immun., 5 (2004), No. 7, 738–743.  
  34. JH. Jandl (ed), Textbook of Hematology, Little Brown, Boston, MA, 1996.  
  35. S. Janz, M. Potter, CS. Rabkin. Lymphoma- and leukemia-associated chromosomal translocations in healthy individuals. Genes Chromosomes Cancer, 36 (2003), No. 3, 211–223.  
  36. H. Kantarjian, Y. Oki, G. Garcia-Manero, X. Huang, S. OBrien, J. Cortes, S. Faderl, C. Bueso-Ramos, F. Ravandi, Z. Estrov, A. Ferrajoli, W. Wierda, J. Shan, J. Davis, F. Giles, HI. Saba, JP. Issa. Results of a randomized study of 3 schedules of low- dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood, 109 (2007), No. 1, 52–57.  
  37. S. Knipp, B. Hildebrand, A. Kündgen, A. Giagounidis, G. Kobbe, R. Haas, C. Aul, N. Gat- termann, U. Germing. Intensive chemotherapy is not recommended for patients aged > 60 years who have myelodysplastic syndromes or acute myeloid leukemia with high-risk karyotypes. Cancer, 110 (2007), No. 2, 345–352.  
  38. N. Korde, SY. Kristinsson, O. Landgren. Monoclonal gammopathy of undetermined signiïňĄcance (MGUS) and smoldering multiple myeloma (Smm) : novel biological insights and development of early treatment strategies. Blood, 117 (2011), No. 21, 5573–5581.  
  39. A. Lander, K. Gokoffski, F. Wan, Q. Nie, A. Calof. Cell lineages and the logic of proliferative control. PLoS biology, 7 (2009), No. 1, 84–100.  
  40. SS. Lange, K. Takata, RD. Wood. DNA polymerases and cancer. Nat. Rev. Cancer, 11 (2011), No. 2, 96–110.  
  41. PM. Lansdorp. Stem cell biology for the transfusionist. Vox Sang., 74 Suppl. 2 (1998), 91–94.  
  42. JE. Layton, H. Hockman, WP. Sheridan, G. Morstyn. Evidence for a novel in vivo control mechanism of granulopoiesis : mature cell-related control of a regulatory growth factor. Blood, 74 (1989), No. 4, 1303–1307.  
  43. W. Lo, C. Chou, K. Gokoffski, F. Wan, A. Lander, A. Calof, Q. Nie. Feedback regulation in multistage cell lineages. Math. Biosci. Eng., 6 (2009), No. 1, 59–82.  
  44. M C. Mackey. Unified hypothesis for the origin of aplastic anemia and periodic hematopoiesis. Blood, 51 (1978), No. 5, 941–956.  
  45. MC. Mackey, L. Glass, Oscillation and chaos in physiological control systems. Science, 197 (1977), No. 4300, 287–289.  
  46. A. Marciniak-Czochra, T.Stiehl. Mathematical models of hematopoietic reconstitution after stem cell transplantation. In HG. Bock, T. Carraro, W. Jäger, S. Koerkel, R. Rannacher, JP. Schloeder (eds), Model Based Parameter Estimation : Theory and Applications. Springer, Heidelberg, 2011.  
  47. A. Marciniak-Czochra, T. Stiehl, W. Jäger, AD. Ho, W. Wagner. Modeling of asymmetric cell division in hematopoietic stem cells – regulation of self-renewal is essential for efficient repopulation. Stem Cells Dev., 18 (2009), No. 3, 377–385.  
  48. A. Marciniak-Czochra, T. Stiehl, W. Wagner. Modeling of replicative senescence in hematopoietic development. Aging (Albany NY), 1 (2009), No. 8, 723–732.  
  49. D. Metcalf. Hematopoietic cytokines. Blood, 111 (2008), No. 2, 485–491.  
  50. F. Michor, TP. Hughes, Y. Iwasa, S. Branford, NP. Shah, CL. Sawyers, MA. Nowak. Dynamics of chronic myeloid leukaemia. Nature, 435 (2005), No. 7046, 1267–1270.  
  51. KA. Moore, IR. Lemischka. Stem cells and their niches. Science, 311 (2006), No. 5769, 1880–1805.  
  52. D. Morgan, A. Murray, T. Hunt, P. Nurse. In : Alberts Molecular Biology of the Cell, 4th Edition, Garland Science, New York, 2002.  
  53. I. Munk Pedersen, J. Reed. Microenvironmental interactions and survival of CLL B-cells. Leuk. Lymphoma, 45 (2004), No. 12, 2365–2372.  
  54. Y. Nakata, P. Getto, A. Marciniak-Czochra, T. Alarcon. Stability analysis of multi-compartment models for cell production systems. J. Biol. Dyn., (2011), doi : .  URI10.1080/17513758.2011.558214
  55. L. Pujo-Menjouet, S. Bernard, MC. Mackey. Long period oscillations in a G0 model of hematopoietic stem cells. SIAM J. Appl. Dyn. Syst, 4 (2005), No. 2, 312–332.  
  56. T. Reya, SJ. Morrison, MF. Clarke, IL. Weissman. Stem cells, cancer, and cancer stem cells. Nature, 414 (2001), No. 6859, 105–111.  
  57. I. Roeder, M. Herberg, M. Horn. An age-structured model of hematopoietic stem cell organization with application to chronic myeloid leukemia. Bull. Math. Biol., 71 (2009), No. 3, 602–626.  
  58. I. Roeder, M. Horn, I. Glauche, A. Hochhaus, MC. Mueller, M. Loeffler. Dynamic modeling of imatinib-treated chronic myeloid leukemia : functional insights and clinical implications. Nat. Med., 12 (2006), No. 10, 1181–1184.  
  59. I. Roeder, M. Loeffler. A novel dynamic model of hematopoietic stem cell organization based on the concept of within-tissue plasticity. Exp. Hematol., 30 (2002), 853–861.  
  60. R. Rudnicki. Chaoticity of the blood cell production system. Chaos, doi : .  URI10.1063/1.3258364, 2009
  61. F. Schueler, C. Hirt, G. Doelken. Chromosomal translocation t (14 ;18) in healthy individuals. Semin. Cancer. Biol., 13 (2003), 3, 203–209.  
  62. K. Shinjo, A. Takeshita, K. Ohnishi, R. Ohno. Granulocyte colony-stimulating factor receptor at various stages of normal and leukemic hematopoietic cells. Leuk. Lymphoma, 25 (1997), No. 1-2, 37–46.  
  63. S. Soltanian, MM. Matin. Cancer stem cells and cancer therapy. Tumour Biol., 32 (2011), No. 3, 425–440.  
  64. T. Stiehl, A. Marciniak-Czochra. Characterization of stem cells using mathematical models of multistage cell lineages. Mathematical and Computer Modelling, 53 (2011), No. 7-8, 1505–1517.  
  65. JE. Till, L. Siminovitch, EA. McCulloch. Stochastic Model of Stem Cell Proliferation Based on Growth of Spleen Colony-Forming Cells. PNAS, 51 (1964), 29–49.  
  66. C. Tomasetti, D. Levy. Role of symmetric and asymmetric division of stem cells in developing drug resistance. PNAS., 107 (2010), No. 39. 16766-16771.  
  67. M. Tormo, I. Marugan, M. Calabuig. Myelodysplastic syndromes : an update on molecular pathology. Clin. Transl. Oncol., 12 (2010), No. 10, 652–661. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.