On the Dynamics of an Impulsive Model of Hematopoiesis
Mathematical Modelling of Natural Phenomena (2009)
- Volume: 4, Issue: 2, page 68-91
- ISSN: 0973-5348
Access Full Article
topAbstract
topHow to cite
topReferences
top- M. Adimy, F. Crauste. Global stability of a partial differential equation with distributed delay due to celluar replication. Nonlinear Analysis, 54 (2003), No. 8, 1469-1491.
- M. Adimy, F. Crauste. Existence, positivity and stability for a nonlinear model of celluar proliferation. Nonlinear Analysis: Real World Applications, 6 (2005), No. 2, 337-366.
- M. Adimy, F. Crauste, L. Pujo-Menjouet. On the stability of a maturity structured model of cellular proliferation. Discret. Cont. Dyn. Sys. Ser. A, 12 (2005), No. 3, 501-522.
- M. Adimy, F. Crauste, S. Ruan. A mathematical study of the hematopoiesis process with applications to chronic myelogenous leukemia. SIAM J. Appl. Math., 65 (2005), No. 4, 1328-1352 .
- M. Adimy, Pujo-Menjouet. Asymptotic behaviour of a singular transport equation modeling cell division. Discret. Cont. Dyn. Sys. B, 3 (2003), No. 3, 439-456.
- S. Bernard, J. Belair, M.C. Mackey. Oscillations in cyclical neutropenia: New evidence based on mathematical modeling. J. Theor. Biol., 223 (2003), No. 3, 283-298.
- S. Bernard, J. Belair, M.C. Mackey. Bifurcations in a white-blood-cell production model. C. R. Biologies, 327 (2004), No. 3, 201-210.
- F.J. Burns, I.F. Tannock. On the existence of a G0 phase in the cell cycle. Cell. Tissue Kinet., 19 (1970), No. 4, 321-334.
- C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis, I. Periodic chronic myelogenous leukemia. J. Theor. Biol., 237 (2005), No. 2, 117-132.
- C. Colijn, M.C. Mackey. A mathematical model of hematopoiesis, II. Cyclical neutropenia. J. Theor. Biol., 237 (2005), No. 2, 133-146.
- J.J. Ferrell. Tripping the switch fantastic: How protein kinase cascade convert graded into switch-like outputs. TIBS, 21 (1996), No. 12, 460-466.
- K. Gopalsamy, B.G. Zhang. On delay differential equation with impulses. J. Math. Anal. Appl., 139 (1989), No. 11, 110-122.
- I. Gyori, G. Ladas. Oscillation theory of delay differential equations with applications. Clarendon, Oxford, 1991.
- J. Hale, S.M. Verduyn Lunel. Introduction to functional differential equations. Applied Mathematical Sciences 99. Springer-Verlag, New York, 1993.
- C. Haurie, D.C. Dale, M.C. Mackey. Cyclical neutropenia and other periodic hematological diseases: A review of mechanisms and mathematical models. Blood, 92 (1998), No. 8, 2629-2640.
- Y. Kuang. Delay differential equations with application in population dynamics. Academic Press. Boston, MA, 1993.
- V. Lakshmikantham, D.D. Bainov, P.S. Simeonov. Theory of impulsive differential equations. World Scientific. Singapore, 1989.
- M. Loeffler, H.E. Wichmann. A comprehensive mathematical model of stem cell proliferation which reproduces most of the published experimental results. Cell Tissue Kinet., 13 (1980), No. 5, 543-561.
- M.C. Mackey. Unified hypothesis of the origin of aplastic anaemia and periodic hematopoiesis. Blood, 51 (1978), No. 5, 941-956.
- M.C. Mackey. Dynamic hematological disorders of stem cell origin. In Biophysical and Biochemical Information Transfer in Recognition, J.G. Vassileva-Popova and E.V. Jensen, eds., Plenum Publishing, New York, 1979, 373-409.
- M.C. Mackey. Mathematical models of hematopoietic cell replication and control. in The Art of Mathematical Modelling: Case Studies in Ecology, Physiology and Biofluids, Prentice-Hall, Upper Saddle River, NJ, 1997, 149-178.
- M.C. Mackey, L. Pujo-Menjouet, J. Wu. Period oscillations of blood cell populations in periodic myelogenous leukemia. SIAM J. Math. Anal., 38 (2006), No. 1, 166-187.
- M.C. Mackey, A. Rey. Propagation of population pulses and fronts in a cell replication problem: non-locality and dependence on the initial function. Physica D, 86 (1995), No. 3, 373-395.
- M.C. Mackey, R. Rudnicki. Global stability in a delayed partial differential equation describing cellular replication. J. Math. Bio., 33 (1994), No. 1, 89-109.
- L. Pujo-Menjouet, M.C. Mackey. Contribution to the study of periodic chronic myelogenous leukemia. C. R. Biologies, 327 (2004), No. 3, 235-244.
- L. Pujo-Menjouet, S. Bernard, M.C. Mackey. Long Period Oscillations in a G0 Model of Hematopoietic Stem Cells. SIAM J. Appl. Dynam. Systems, 4 (2005), No. 2, 312-332.
- S.I. Rubino, J.L. Lebowitz. A mathematical model of neutrophil production and control in normal man. J. Math. Bio., 1 (1975), No. 3, 187-225.
- L. Sachs. The molecular control of hemopoiesis and leukemia. C. R. Acad. Sci. Paris, 316 (1993), No. 9, 882-891.
- S.H. Saker, J.O. Alzabut. Existence of periodic solutions, global attractivity and oscillation of impulsive delay population model. Nonlinear Analysis: real world applications, 8 (2007), No. 4, 1029-1039.
- G.F. Webb. Theory of Nonlinear Age-dependent Population Dynamics. Monogr. Textbooks Pure Appl. Math., 89, Dekker, New York, 1985.
- J. Yan, A. Zhao. Oscillation and stability of linear impulsive delay differential equations. J. Math. Anal. Appl., 227 (1998), No. 1, 187-194.
- J. Yan, A. Zhao, J.J. Nieto. Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra Systems. Mathematical and Computer Modelling, 40 (2004), No 5-6, 509-518.