Stippling the Skin: Generation of Anatomical Periodicity by Reaction-Diffusion Mechanisms

D. J. Headon; K. J. Painter

Mathematical Modelling of Natural Phenomena (2009)

  • Volume: 4, Issue: 4, page 83-102
  • ISSN: 0973-5348

Abstract

top
During vertebrate development cells acquire different fates depending largely on their location in the embryo. The definition of a cell's developmental fate relies on extensive intercellular communication that produces positional information and ultimately generates an appropriately proportioned anatomy. Here we place reaction-diffusion mechanisms in the context of general concepts regarding the generation of positional information during development and then focus on these mechanisms as parsimonious systems for positioning anatomical structures relative to one another. In particular, we discuss the evidence for reaction-diffusion systems operating in the developing skin to yield the periodic arrangements of hairs and feathers and discuss how best to bring together experimental molecular biology and numerical simulations to yield a more complete understanding of the mechanisms of development and natural variation.

How to cite

top

Headon, D. J., and Painter, K. J.. "Stippling the Skin: Generation of Anatomical Periodicity by Reaction-Diffusion Mechanisms." Mathematical Modelling of Natural Phenomena 4.4 (2009): 83-102. <http://eudml.org/doc/222412>.

@article{Headon2009,
abstract = { During vertebrate development cells acquire different fates depending largely on their location in the embryo. The definition of a cell's developmental fate relies on extensive intercellular communication that produces positional information and ultimately generates an appropriately proportioned anatomy. Here we place reaction-diffusion mechanisms in the context of general concepts regarding the generation of positional information during development and then focus on these mechanisms as parsimonious systems for positioning anatomical structures relative to one another. In particular, we discuss the evidence for reaction-diffusion systems operating in the developing skin to yield the periodic arrangements of hairs and feathers and discuss how best to bring together experimental molecular biology and numerical simulations to yield a more complete understanding of the mechanisms of development and natural variation. },
author = {Headon, D. J., Painter, K. J.},
journal = {Mathematical Modelling of Natural Phenomena},
keywords = {reaction-diffusion; pattern formation; feather; hair; placode},
language = {eng},
month = {7},
number = {4},
pages = {83-102},
publisher = {EDP Sciences},
title = {Stippling the Skin: Generation of Anatomical Periodicity by Reaction-Diffusion Mechanisms},
url = {http://eudml.org/doc/222412},
volume = {4},
year = {2009},
}

TY - JOUR
AU - Headon, D. J.
AU - Painter, K. J.
TI - Stippling the Skin: Generation of Anatomical Periodicity by Reaction-Diffusion Mechanisms
JO - Mathematical Modelling of Natural Phenomena
DA - 2009/7//
PB - EDP Sciences
VL - 4
IS - 4
SP - 83
EP - 102
AB - During vertebrate development cells acquire different fates depending largely on their location in the embryo. The definition of a cell's developmental fate relies on extensive intercellular communication that produces positional information and ultimately generates an appropriately proportioned anatomy. Here we place reaction-diffusion mechanisms in the context of general concepts regarding the generation of positional information during development and then focus on these mechanisms as parsimonious systems for positioning anatomical structures relative to one another. In particular, we discuss the evidence for reaction-diffusion systems operating in the developing skin to yield the periodic arrangements of hairs and feathers and discuss how best to bring together experimental molecular biology and numerical simulations to yield a more complete understanding of the mechanisms of development and natural variation.
LA - eng
KW - reaction-diffusion; pattern formation; feather; hair; placode
UR - http://eudml.org/doc/222412
ER -

References

top
  1. J. G. Abreu, N. I. Ketpura, B. Reversade, E. M. De Robertis. Connective-tissue growth factor (CTGF) modulates cell signalling by BMP and TGF-beta. Nat. Cell Biol., 4 (2002), 599–604.  
  2. M. Akam. Drosophila development: making stripes inelegantly. Nature, 341 (1989), 282–283.  
  3. T. Andl, S. T. Reddy, T. Gaddapara, S. E. Millar. WNT signals are required for the initiation of hair follicle development. Dev. Cell, 2 (2002), 643–653.  
  4. N. J. Armstrong, K. J. Painter, J. A. Sherratt. A continuum approach to modelling cell-cell adhesion. J. Theor. Biol., 243 (2006), 98–113.  
  5. R. Atit, R. A. Conlon, L. Niswander. EGF signaling patterns the feather array by promoting the interbud fate. Dev. Cell, 4 (2003), 231–240.  
  6. R. E. Baker, S. Schnell, P. K. Maini. A clock and wavefront mechanism for somite formation. Dev. Biol., 293 (2006), 116–126.  
  7. W. Balemans, W. Van Hul. Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators. Dev. Biol., 250 (2002), 231–250.  
  8. J. Cooke, E. C. Zeeman. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol., 58 (1976), 455–476.  
  9. E. J. Crampin, E. A. Gaffney, P. K. Maini. Reaction and diffusion on growing domains: Scenarios for robust pattern formation. Bull. Math. Biol., 61 (1999), 1093–1120.  
  10. Y. Cui, R. Hackenmiller, L. Berg, F. Jean, T. Nakayama, G. Thomas, J. L. Christian. The activity and signaling range of mature BMP-4 is regulated by sequential cleavage at two sites within the prodomain of the precursor. Genes Dev., 15 (2001), 2797–2802.  
  11. C. F. Drew, C. M. Lin, T. X. Jiang, G. Blunt, C. Mou, C. M. Chuong, D. J. Headon. The Edar subfamily in feather placode formation. Dev. Biol., 305 (2007), 232–245.  
  12. R. Dillon, P. K. Maini, H. G. Othmer Pattern formation in generalised Turing systems. I. Steady state patterns in systems with mixed boundary conditions. J. Math. Biol., 32 (1994), 345–393.  
  13. S. Eaton. Release and trafficking of lipid-linked morphogens. Curr. Opin. Genet. Dev., 16 (2006), 17–22.  
  14. E. A. Gaffney, N. A. Monk. Gene expression time delays and Turing pattern formation systems. Bull. Math. Biol., 68 (2006), 99–130.  
  15. A. Gierer, H. Meinhardt. A theory of biological pattern formation. Kybernetik, 12 (1972), 30–39.  
  16. S.F. Gilbert. Developmental biology. Sinauer Associates, Sunderland, 2006.  
  17. K. Harding, T. Hoey, R. Warrior, M. Levine. Autoregulatory and gap gene response elements of the even-skipped promoter of Drosophila. EMBO J., 8 (1989), 1205–1212.  
  18. M. P. Harris, S. Williamson, J. F. Fallon, H. Meinhardt, R. O. Prum. Molecular evidence for an activator-inhibitor mechanism in development of embryonic feather branching. Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 11734–11739.  
  19. L. Houghton, C. Lindon, B. A. Morgan. The ectodysplasin pathway in feather tract development. Development, 132 (2005), 863–872.  
  20. T. X. Jiang, H. S. Jung, R. B. Widelitz, C. M. Chuong. Self-organization of periodic patterns by dissociated feather mesenchymal cells and the regulation of size, number and spacing of primordia. Development, 126 (1999), 4997–5009.  
  21. T. X. Jiang, R. B. Widelitz, W. M. Shen, P. Will, D. Y. Wu, C. M. Lin, H. S. Jung, C. M. Chuong. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models. Int. J. Dev. Biol., 48 (2004), 117–135.  
  22. H. S. Jung, P. H. Francis-West, R. B. Widelitz, T. X. Jiang, S. Ting-Berreth, C. Tickle, L. Wolpert, C. M. Chuong. Local inhibitory action of BMPs and their relationships with activators in feather formation: implications for periodic patterning. Dev. Biol., 196 (1998), 11–23.  
  23. M. Kashiwagi, T. Kuroki, N. Huh. Specific inhibition of hair follicle formation by epidermal growth factor in an organ culture of developing mouse skin. Dev. Biol., 189 (1997), 22–32.  
  24. E. F. Keller, L. A. Segel. Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol., 26 (1970), 399–415.  
  25. S. Kondo. The reaction-diffusion system: a mechanism for autonomous pattern formation in the animal skin. Genes Cells, 7 (2002), 535–541.  
  26. J. Laurikkala, J. Pispa, H. S. Jung, P. Nieminen, M. Mikkola, X. Wang, U. Saarialho-Kere, J. Galceran, R. Grosschedl, I. Thesleff. Regulation of hair follicle development by the TNF signal ectodysplasin and its receptor Edar. Development, 129 (2002), 2541–2553.  
  27. M. Mandler, A. Neubüser. FGF signaling is required for initiation of feather placode development. Development, 131 (2004), 3333–3343.  
  28. H. Meinhardt. Models for positional signalling with application to the dorsoventral patterning of insects and segregation into different cell types. Development, 107 Suppl (2004), 169–180.  
  29. J. R. Mooney, B. N. Nagorcka. Spatial patterns produced by a reaction-diffusion system in primary hair follicles. J. Theor. Biol., 115 (1985), 299–317.  
  30. C. Mou, B. Jackson, P. Schneider, P. A. Overbeek, D. J. Headon. Generation of the primary hair follicle pattern. Proc. Natl. Acad. Sci. U.S.A., 103 (2006), 9075–9080.  
  31. J. D. Murray. Pattern formation in integrative biology–a marriage of theory and experiment. C. R. Acad. Sci. III, 323 (2000), 5–14.  
  32. J. D. Murray. On the mechanochemical theory of biological pattern formation with application to vasculogenesis. C. R. Biol., 326 (2003), 239–252.  
  33. B. N. Nagorcka, J. R. Mooney. The role of a reaction-diffusion system in the initiation of primary hair follicles. J. Theor. Biol., 114 (1985), 243–272.  
  34. K. Narhi, E. Jarvinen, W. Birchmeier, M. M. Taketo, M. L. Mikkola, I. Thesleff. Sustained epithelial beta-catenin activity induces precocious hair development but disrupts hair follicle down-growth and hair shaft formation. Development, 135 (2008), 1019–1028.  
  35. S. Noramly, A. Freeman, B. A. Morgan. beta-catenin signaling can initiate feather bud development. Development, 126 (1999), 3509–3521.  
  36. S. Noramly, B. A. Morgan. BMPs mediate lateral inhibition at successive stages in feather tract development. Development, 125 (1998), 3775–3787.  
  37. K. J. Painter, P. K. Maini, H. G. Othmer. Stripe formation in juvenile Pomacanthus explained by a generalized turing mechanism with chemotaxis. Proc. Natl. Acad. Sci. U.S.A., 96 (1999), 5549–5554.  
  38. K. Patel, H. Makarenkova, H. S. Jung. The role of long range, local and direct signalling molecules during chick feather bud development involving the BMPs, follistatin and the Eph receptor tyrosine kinase Eph-A4. Mech. Dev., 86 (1999), 51–62.  
  39. R. Paus, G. Cotsarelis. The biology of hair follicles. N. Engl. J. Med., 341 (1999), 491–497.  
  40. I. Salazar-Ciudad, J. Jernvall, S. A. Newman. Mechanisms of pattern formation in development and evolution. Development, 130 (2003), 2027–2037.  
  41. R. Schmidt-Ullrich, R. Paus. Molecular principles of hair follicle induction and morphogenesis. Bioessays, 27 (2005), 247–261.  
  42. P. Sengel. Morphogenesis of skin. CUP, Cambridge, 1976.  
  43. S. Sick, S. Reinker, J. Timmer, T. Schlake. WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism. Science, 314 (2006), 1447–1450.  
  44. H. Song, Y. Wang, P. F. Goetinck. Fibroblast growth factor 2 can replace ectodermal signaling for feather development. Proc. Natl. Acad. Sci. U.S.A., 93 (1996), 10246–10249.  
  45. A. A. Teleman, M. Strigini, S. M. Cohen. Shaping morphogen gradients. Cell, 105 (2001), 559–562.  
  46. A.M. Turing. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. Lond. B, 237 (1952), 37–72.  
  47. G. Turk. Generating textures on arbitrary surfaces using reaction-diffusion. Comp. Graphics, 25 (1991), 289–298.  
  48. J.P. Vincent, J. Briscoe. Morphogens. Curr. Biol., 11 (2001), R851–854.  
  49. R. B. Widelitz, T. X. Jiang, J. Lu, C. M. Chuong. beta-catenin in epithelial morphogenesis: conversion of part of avian foot scales into feather buds with a mutated beta-catenin. Dev. Biol., 219 (2000), 98–114.  
  50. L. Wolpert. Principles of development. OUP, Oxford, 2006.  
  51. M. Yamaguchi, E. Yoshimoto, S. Kondo. Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism. Proc. Natl. Acad. Sci. U.S.A., 104 (2007), 4790–4793.  
  52. K. Yoshida, H. Munakata. Connective tissue growth factor binds to fibronectin through the type I repeat modules and enhances the affinity of fibronectin to fibrin. Biochim. Biophys. Acta, 1770 (2007), 672–680.  
  53. M. Yu, Z. Yue, P. Wu, D. Y. Wu, J. A. Mayer, M. Medina, R. B. Widelitz, T. X. Jiang, C. M. Chuong. The biology of feather follicles. Int. J. Dev. Biol., 48 (2004), 181–191.  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.