A generalized dual maximizer for the Monge–Kantorovich transport problem∗

Mathias Beiglböck; Christian Léonard; Walter Schachermayer

ESAIM: Probability and Statistics (2012)

  • Volume: 16, page 306-323
  • ISSN: 1292-8100

Abstract

top
The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y →  [0,∞]  is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel’s perturbation technique.

How to cite

top

Beiglböck, Mathias, Léonard, Christian, and Schachermayer, Walter. "A generalized dual maximizer for the Monge–Kantorovich transport problem∗." ESAIM: Probability and Statistics 16 (2012): 306-323. <http://eudml.org/doc/222460>.

@article{Beiglböck2012,
abstract = {The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y →  [0,∞]  is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel’s perturbation technique.},
author = {Beiglböck, Mathias, Léonard, Christian, Schachermayer, Walter},
journal = {ESAIM: Probability and Statistics},
keywords = {Optimal transport; duality in function spaces; Fenchel’s perturbation technique; optimal transport; Fenchel's perturbation technique},
language = {eng},
month = {7},
pages = {306-323},
publisher = {EDP Sciences},
title = {A generalized dual maximizer for the Monge–Kantorovich transport problem∗},
url = {http://eudml.org/doc/222460},
volume = {16},
year = {2012},
}

TY - JOUR
AU - Beiglböck, Mathias
AU - Léonard, Christian
AU - Schachermayer, Walter
TI - A generalized dual maximizer for the Monge–Kantorovich transport problem∗
JO - ESAIM: Probability and Statistics
DA - 2012/7//
PB - EDP Sciences
VL - 16
SP - 306
EP - 323
AB - The dual attainment of the Monge–Kantorovich transport problem is analyzed in a general setting. The spaces X,Y are assumed to be polish and equipped with Borel probability measures μ and ν. The transport cost function c : X × Y →  [0,∞]  is assumed to be Borel measurable. We show that a dual optimizer always exists, provided we interpret it as a projective limit of certain finitely additive measures. Our methods are functional analytic and rely on Fenchel’s perturbation technique.
LA - eng
KW - Optimal transport; duality in function spaces; Fenchel’s perturbation technique; optimal transport; Fenchel's perturbation technique
UR - http://eudml.org/doc/222460
ER -

References

top
  1. J. Aaronson, An introduction to infinite ergodic theory, in Math. Surveys Monogr., Amer. Math. Soc. Providence, RI 50 (1997).  
  2. J. Aaronson and M. Keane, The visits to zero of some deterministic random walks. Proc. London Math. Soc.44 (1982) 535–553.  
  3. L. Ambrosio and A. Pratelli, Existence and stability results in the L1-theory of optimal transportation, CIME Course Lect. Notes Math. 1813 (2003) 123–160.  
  4. M. Beiglböck, M. Goldstern, G. Maresh and W. Schachermayer, Optimal and better transport plans. J. Funct. Anal.256 (2009) 1907–1927.  
  5. M. Beiglböck, C. Léonard and W. Schachermayer, A general duality theorem for the Monge–Kantorovich transport problem. Submitted (2009).  
  6. M. Beiglböck, C. Léonard and W. Schachermayer, On the duality of the Monge–Kantorovich transport problem, in Summer school on optimal transport. Séminaires et Congrès, Société Mathématique de France, Institut Fourier, Grenoble (2009)  
  7. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math.44 (1991) 375–417.  
  8. M. Beiglböck and W. Schachermayer, Duality for Borel measurable cost functions. Trans. Amer. Math. Soc.363 (2011) 4203–4224.  
  9. Probabilités, I (Univ. Rennes, Rennes, 1976). Exp. No. 5, Dépt. Math. Informat., Univ. Rennes, Rennes (1976) 7.  
  10. L. Cafarelli and R.J. McCann, Free boundaries in optimal transport and Monge–Ampere obstacle problems. Ann. of Math.171 (2010) 673–730.  
  11. A. de Acosta, Invariance principles in probability for triangular arrays of B-valued random vectors and some applications. Ann. Probab.10 (1982) 346–373.  
  12. L. Decreusefond, Wasserstein distance on configuration space. Potential Anal.28 (2008) 283–300.  
  13. L. Decreusefond, A. Joulin and N. Savy, Upper bounds on Rubinstein distances on configuration spaces and applications. Commun. Stochastic Anal.4 (2010) 377–399.  
  14. R.M. Dudley, Probabilities and metrics, Convergence of laws on metric spaces, with a view to statistical testing, No. 45. Matematisk Institut, Aarhus Universitet, Aarhus. Lect. Notes Ser. (1976).  
  15. R.M. Dudley, Real analysis and probability, Cambridge University Press, Cambridge. Cambridge Studies in Adv. Math.74 (2002). Revised reprint of the 1989 original.  
  16. X. Fernique, Sur le théorème de Kantorovich-Rubinstein dans les espaces polonais in Seminar on Probability, XV (Univ. Strasbourg, Strasbourg, 1979/1980) (French). Lect. Notes Math.850 (1981) 6–10.  
  17. A. Figalli, The optimal partial transport problem. Arch. Rational Mech. Anal.195 (2010) 533–560.  
  18. D. Feyel and A.S. Üstünel, Measure transport on Wiener space and the Girsanov theorem. C. R. Math. Acad. Sci. Paris334 (2002) 1025–1028.  
  19. D. Feyel and A.S. Üstünel, Monge-Kantorovitch measure transportation and Monge–Ampère equation on Wiener space. Probab. Theory Relat. Fields128 (2004) 347–385.  
  20. D. Feyel and A.S. Üstünel, Monge-Kantorovitch measure transportation, Monge–Ampère equation and the Itô calculus, in Stochastic analysis and related topics in Kyoto. Adv. Stud. Pure Math. Math. Soc. Japan41 (2004) 49–74.  
  21. D. Feyel and A.S. Üstünel, Solution of the Monge-Ampère equation on Wiener space for general log-concave measures. J. Funct. Anal.232 (2006) 29–55.  
  22. N. Gaffke and L. Rüschendorf, On a class of extremal problems in statistics. Math. Operationsforsch. Statist. Ser. Optim.12 (1981) 123–135.  
  23. W. Gangbo and R.J. McCann, The geometry of optimal transportation. Acta Math.177 (1996) 113–161.  
  24. L.V. Kantorovich, On the translocation of masses. C. R. (Dokl.) Acad. Sci. URSS37 (1942) 199–201.  
  25. L.V. Kantorovič and G.Š. Rubinšteĭn, On a space of completely additive functions. Vestnik Leningrad. Univ.13 (1958) 52–59.  
  26. H. Kellerer, Duality theorems for marginal problems. Z. Wahrscheinlichkeitstheorie Verw. Gebiete67 (1984) 399–432.  
  27. C. Léonard, A saddle-point approach to the Monge–Kantorovich transport problem. ESAIM : COCV17 (2011) 682–704.  
  28. R. McCann, Existence and uniqueness of monotone measure-preserving maps. Duke Math. J.80 (1995) 309–323.  
  29. T. Mikami, A simple proof of duality theorem for Monge–Kantorovich problem. Kodai Math. J.29 (2006) 1–4.  
  30. T. Mikami and M. Thieullen, Duality theorem for the stochastic optimal control problem. Stoch. Proc. Appl.116 (2006) 1815–1835.  
  31. D. Ramachandran and L. Rüschendorf, A general duality theorem for marginal problems. Probab. Theory Relat. Fields101 (1995) 311–319.  
  32. D. Ramachandran and L. Rüschendorf, Duality and perfect probability spaces. Proc. Amer. Math. Soc.124 (1996) 2223–2228.  
  33. M. Reed and B. Simon, Methods of Modern Mathematical Physics, I : Functional Analysis. Academic Press (1980).  
  34. L. Rüschendorf, On c-optimal random variables. Stat. Probab. Lett.27 (1996) 267–270.  
  35. K. Schmidt, A cylinder flow arising from irregularity of distribution. Compositio Math.36 (1978) 225–232.  
  36. W. Schachermayer and J. Teichman, Characterization of optimal transport plans for the Monge–Kantorovich problem. Proc. Amer. Math. Soc.137 (2009) 519–529.  
  37. A. Szulga, On minimal metrics in the space of random variables. Teor. Veroyatnost. i Primenen.27 (1982) 401–405.  
  38. A.S. Üstünel, A necessary, and sufficient condition for invertibility of adapted perturbations of identity on Wiener space. C. R. Acad. Sci. Paris, Ser. I346 (2008) 897–900.  
  39. A.S. Üstünel and M. Zakai, Sufficient conditions for the invertibility of adapted perturbations of identity on the Wiener space. Probab. Theory Relat. Fields139 (2007) 207–234.  
  40. C. Villani, Topics in Optimal Transportation, in Graduate Studies in Mathematics. Amer. Math. Soc., Providence RI 58 (2003).  
  41. C. Villani, Optimal Transport, Old and New, in Grundlehren der mathematischen Wissenschaften. Springer 338 (2009).  

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.