# Large deviations for directed percolation on a thin rectangle

ESAIM: Probability and Statistics (2012)

- Volume: 15, page 217-232
- ISSN: 1292-8100

## Access Full Article

top## Abstract

top## How to cite

topIbrahim, Jean-Paul. "Large deviations for directed percolation on a thin rectangle." ESAIM: Probability and Statistics 15 (2012): 217-232. <http://eudml.org/doc/222485>.

@article{Ibrahim2012,

abstract = {Following the recent investigations of Baik and Suidan in [Int. Math. Res. Not. (2005) 325–337] and Bodineau and Martin in [Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], we prove large deviation properties for a last-passage percolation model in ℤ+2 whose paths are close to the axis. The results are mainly obtained when the random weights are Gaussian or have a finite moment-generating function and rely, as in [J. Baik and T.M. Suidan, Int. Math. Res. Not. (2005) 325–337] and [T. Bodineau and J. Martin, Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], on an embedding in Brownian paths and the KMT approximation. The study of the subexponential case completes the exposition.},

author = {Ibrahim, Jean-Paul},

journal = {ESAIM: Probability and Statistics},

keywords = {Large deviations; random growth model; Skorokhod embedding theorem; large deviations},

language = {eng},

month = {1},

pages = {217-232},

publisher = {EDP Sciences},

title = {Large deviations for directed percolation on a thin rectangle},

url = {http://eudml.org/doc/222485},

volume = {15},

year = {2012},

}

TY - JOUR

AU - Ibrahim, Jean-Paul

TI - Large deviations for directed percolation on a thin rectangle

JO - ESAIM: Probability and Statistics

DA - 2012/1//

PB - EDP Sciences

VL - 15

SP - 217

EP - 232

AB - Following the recent investigations of Baik and Suidan in [Int. Math. Res. Not. (2005) 325–337] and Bodineau and Martin in [Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], we prove large deviation properties for a last-passage percolation model in ℤ+2 whose paths are close to the axis. The results are mainly obtained when the random weights are Gaussian or have a finite moment-generating function and rely, as in [J. Baik and T.M. Suidan, Int. Math. Res. Not. (2005) 325–337] and [T. Bodineau and J. Martin, Electron. Commun. Probab. 10 (2005) 105–112 (electronic)], on an embedding in Brownian paths and the KMT approximation. The study of the subexponential case completes the exposition.

LA - eng

KW - Large deviations; random growth model; Skorokhod embedding theorem; large deviations

UR - http://eudml.org/doc/222485

ER -

## References

top- J. Baik and T.M. Suidan, A GUE central limit theorem and universality of directed first and last passage site percolation. Int. Math. Res. Not. (2005) 325–337. Zbl1136.60313
- Yu. Baryshnikov, GUEs and queues. Probab. Theory Relat. Fields119 (2001) 256–274. Zbl0980.60042
- G. Ben Arous, A. Dembo and A. Guionnet, Aging of spherical spin glasses. Probab. Theory Relat. Fields120 (2001) 1–67. Zbl0993.60055
- G. Ben Arous and A. Guionnet, Large deviations for Wigner’s law and Voiculescu’s non-commutative entropy. Probab. Theory Relat. Fields108 (1997) 517–542. Zbl0954.60029
- T. Bodineau and J. Martin, A universality property for last-passage percolation paths close to the axis. Electron. Commun. Probab.10 (2005) 105–112 (electronic). Zbl1111.60068
- L. Breiman, Probability, Classics in Applied Mathematics7. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992). Corrected reprint of the 1968 original.
- D.L. Burkholder, Distribution function inequalities for martingales. Ann. Probability1 (1973) 19–42. Zbl0301.60035
- S. Chatterjee, A simple invariance theorem. Preprint arXiv:math.PR/0508213 (2005).
- S. Csörgő and P. Hall, The Komlós-Major-Tusnády approximations and their applications. Austral. J. Statist.26 (1984) 189–218. Zbl0557.60028
- B. Davis, On the Lp norms of stochastic integrals and other martingales. Duke Math. J.43 (1976) 697–704. Zbl0349.60061
- D. Féral, On large deviations for the spectral measure of discrete coulomb gas, in Séminaire de Probabilités, XLI. Lecture Notes in Math.1934. Springer, Berlin (2008) 19–50.
- D.H. Fuk, Certain probabilistic inequalities for martingales. Sibirsk. Mat. Ž.14 (1973) 185–193, 239. Zbl0273.60029
- D.H. Fuk and S.V. Nagaev, Probabilistic inequalities for sums of independent random variables. Teor. Verojatnost. i Primenen.16 (1971) 660–675. Zbl0259.60024
- J. Gravner, C.A. Tracy and H. Widom, Limit theorems for height fluctuations in a class of discrete space and time growth models. J. Statist. Phys.102 (2001) 1085–1132. Zbl0989.82030
- K. Johansson, On fluctuations of eigenvalues of random Hermitian matrices. Duke Math. J.91 (1998) 151–204. Zbl1039.82504
- K. Johansson, Shape fluctuations and random matrices. Comm. Math. Phys.209 (2000) 437–476. Zbl0969.15008
- J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent RV’s, and the sample DF. II. Z. Wahrscheinlichkeitstheor. und Verw. Geb.34 (1976) 33–58. Zbl0307.60045
- W. König, Orthogonal polynomial ensembles in probability theory. Prob. Surveys2 (2005) 385–447 (electronic). Zbl1189.60024
- M. Ledoux, Deviation inequalities on largest eigenvalues, in Geometric aspects of functional analysis. Lecture Notes in Math.1910 (2007) 167–219. Zbl1130.15012
- M. Ledoux and B. Rider, Small deviations for beta ensembles. Preprint (2010). Zbl1228.60015
- M.L. Mehta, Random matrices, 2nd edition. Academic Press Inc., Boston, MA (1991). Zbl0780.60014
- T. Mikosch and A.V. Nagaev, Large deviations of heavy-tailed sums with applications in insurance. Extremes1 (1998) 81–110. Zbl0927.60037
- N. O’Connell and M. Yor, A representation for non-colliding random walks. Electron. Commun. Probab.7 (2002) 1–12 (electronic). Zbl1037.15019
- D.l Revuz and M. Yor, Continuous martingales and Brownian motion, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]293, 3rd edition,. Springer-Verlag, Berlin (1999). Zbl0917.60006
- E.B. Saff and V. Totik, Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]316. Springer-Verlag, Berlin (1997). Appendix B by Thomas Bloom.
- A.I. Sakhanenko, A new way to obtain estimates in the invariance principle, in High dimensional probability, II (Seattle, WA, 1999), Progr. Probab.47. Birkhäuser Boston, Boston, MA (2000) 223–245. Zbl0971.60032
- S. Sawyer, A remark on the Skorohod representation. Z. Wahrscheinlichkeitstheor. und Verw. Geb.23 (1972) 67–74. Zbl0226.60068
- A.V. Skorokhod, Studies in the theory of random processes. Translated from the Russian by Scripta Technica, Inc. Addison-Wesley Publishing Co., Inc., Reading, Mass (1965).
- T. Suidan, A remark on a theorem of Chatterjee and last passage percolation. J. Phys. A39 (2006) 8977–8981. Zbl1148.82014
- C.A. Tracy and H. Widom, Level-spacing distributions and the Airy kernel. Phys. Lett. B305 (1993) 115–118. Zbl0789.35152

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.