Subgroups of -factorizable groups
Constancio Hernández; Mihail G. Tkachenko
Commentationes Mathematicae Universitatis Carolinae (1998)
- Volume: 39, Issue: 2, page 371-378
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHernández, Constancio, and Tkachenko, Mihail G.. "Subgroups of $\mathbb {R}$-factorizable groups." Commentationes Mathematicae Universitatis Carolinae 39.2 (1998): 371-378. <http://eudml.org/doc/22345>.
@article{Hernández1998,
abstract = {The properties of $\mathbb \{R\}$-factorizable groups and their subgroups are studied. We show that a locally compact group $G$ is $\mathbb \{R\}$-factorizable if and only if $G$ is $\sigma $-compact. It is proved that a subgroup $H$ of an $\mathbb \{R\}$-factorizable group $G$ is $\mathbb \{R\}$-factorizable if and only if $H$ is $z$-embedded in $G$. Therefore, a subgroup of an $\mathbb \{R\}$-factorizable group need not be $\mathbb \{R\}$-factorizable, and we present a method for constructing non-$\mathbb \{R\}$-factorizable dense subgroups of a special class of $\mathbb \{R\}$-factorizable groups. Finally, we construct a closed $G_\{\delta \}$-subgroup of an $\mathbb \{R\}$-factorizable group which is not $\mathbb \{R\}$-factorizable.},
author = {Hernández, Constancio, Tkachenko, Mihail G.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\mathbb \{R\}$-factorizable group; $z$-embedded set; $\aleph _0$-bounded group; $P$-group; Lindelöf group; -space; -group; pseudo--compact; -stable; -factorizable},
language = {eng},
number = {2},
pages = {371-378},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Subgroups of $\mathbb \{R\}$-factorizable groups},
url = {http://eudml.org/doc/22345},
volume = {39},
year = {1998},
}
TY - JOUR
AU - Hernández, Constancio
AU - Tkachenko, Mihail G.
TI - Subgroups of $\mathbb {R}$-factorizable groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1998
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 39
IS - 2
SP - 371
EP - 378
AB - The properties of $\mathbb {R}$-factorizable groups and their subgroups are studied. We show that a locally compact group $G$ is $\mathbb {R}$-factorizable if and only if $G$ is $\sigma $-compact. It is proved that a subgroup $H$ of an $\mathbb {R}$-factorizable group $G$ is $\mathbb {R}$-factorizable if and only if $H$ is $z$-embedded in $G$. Therefore, a subgroup of an $\mathbb {R}$-factorizable group need not be $\mathbb {R}$-factorizable, and we present a method for constructing non-$\mathbb {R}$-factorizable dense subgroups of a special class of $\mathbb {R}$-factorizable groups. Finally, we construct a closed $G_{\delta }$-subgroup of an $\mathbb {R}$-factorizable group which is not $\mathbb {R}$-factorizable.
LA - eng
KW - $\mathbb {R}$-factorizable group; $z$-embedded set; $\aleph _0$-bounded group; $P$-group; Lindelöf group; -space; -group; pseudo--compact; -stable; -factorizable
UR - http://eudml.org/doc/22345
ER -
References
top- Comfort W.W., Compactness like properties for generalized weak topological sums, Pacific J. Math. 60 (1975), 31-37. (1975) Zbl0307.54016MR0431088
- Comfort W.W., Ross K.A., Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483-496. (1966) Zbl0214.28502MR0207886
- Guran I.I., On topological groups close to being Lindelöf, Soviet Math. Dokl. 23 (1981), 173-175. (1981) Zbl0478.22002
- Hernández S., Sanchiz M., Tkačenko M., Bounded sets in spaces and topological groups, submitted for publication.
- Engelking R., General Topology, Heldermann Verlag, 1989. Zbl0684.54001MR1039321
- Pontryagin L.S., Continuous Groups, Princeton Univ. Press, Princeton, 1939. Zbl0659.22001
- Tkačenko M.G., Subgroups, quotient groups and products of -factorizable groups, Topology Proceedings 16 (1991), 201-231. (1991) MR1206464
- Tkačenko M.G., Factorization theorems for topological groups and their applications, Topology Appl. 38 (1991), 21-37. (1991) MR1093863
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.