Subgroups and products of -factorizable P -groups

Constancio Hernández; Mihail G. Tkachenko

Commentationes Mathematicae Universitatis Carolinae (2004)

  • Volume: 45, Issue: 1, page 153-167
  • ISSN: 0010-2628

Abstract

top
We show that every subgroup of an -factorizable abelian P -group is topologically isomorphic to a closed subgroup of another -factorizable abelian P -group. This implies that closed subgroups of -factorizable P -groups are not necessarily -factorizable. We also prove that if a Hausdorff space Y of countable pseudocharacter is a continuous image of a product X = i I X i of P -spaces and the space X is pseudo- ω 1 -compact, then n w ( Y ) 0 . In particular, direct products of -factorizable P -groups are -factorizable and ω -stable.

How to cite

top

Hernández, Constancio, and Tkachenko, Mihail G.. "Subgroups and products of $\mathbb {R}$-factorizable $P$-groups." Commentationes Mathematicae Universitatis Carolinae 45.1 (2004): 153-167. <http://eudml.org/doc/249344>.

@article{Hernández2004,
abstract = {We show that every subgroup of an $\mathbb \{R\}$-factorizable abelian $P$-group is topologically isomorphic to a closed subgroup of another $\mathbb \{R\}$-factorizable abelian $P$-group. This implies that closed subgroups of $\mathbb \{R\}$-factorizable $P$-groups are not necessarily $\mathbb \{R\}$-factorizable. We also prove that if a Hausdorff space $Y$ of countable pseudocharacter is a continuous image of a product $X=\prod _\{i\in I\}X_i$ of $P$-spaces and the space $X$ is pseudo-$\omega _1$-compact, then $nw(Y)\le \aleph _0$. In particular, direct products of $\mathbb \{R\}$-factorizable $P$-groups are $\mathbb \{R\}$-factorizable and $\omega $-stable.},
author = {Hernández, Constancio, Tkachenko, Mihail G.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$P$-space; $P$-group; pseudo-$\omega _1$-compact; $\omega $-stable; $\mathbb \{R\}$-factorizable; $\aleph _0$-bounded; pseudocharacter; cellularity; $\aleph _ 0$-box topology; $\sigma $-product; -space; -group; pseudo--compact; -stable; -factorizable},
language = {eng},
number = {1},
pages = {153-167},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Subgroups and products of $\mathbb \{R\}$-factorizable $P$-groups},
url = {http://eudml.org/doc/249344},
volume = {45},
year = {2004},
}

TY - JOUR
AU - Hernández, Constancio
AU - Tkachenko, Mihail G.
TI - Subgroups and products of $\mathbb {R}$-factorizable $P$-groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 1
SP - 153
EP - 167
AB - We show that every subgroup of an $\mathbb {R}$-factorizable abelian $P$-group is topologically isomorphic to a closed subgroup of another $\mathbb {R}$-factorizable abelian $P$-group. This implies that closed subgroups of $\mathbb {R}$-factorizable $P$-groups are not necessarily $\mathbb {R}$-factorizable. We also prove that if a Hausdorff space $Y$ of countable pseudocharacter is a continuous image of a product $X=\prod _{i\in I}X_i$ of $P$-spaces and the space $X$ is pseudo-$\omega _1$-compact, then $nw(Y)\le \aleph _0$. In particular, direct products of $\mathbb {R}$-factorizable $P$-groups are $\mathbb {R}$-factorizable and $\omega $-stable.
LA - eng
KW - $P$-space; $P$-group; pseudo-$\omega _1$-compact; $\omega $-stable; $\mathbb {R}$-factorizable; $\aleph _0$-bounded; pseudocharacter; cellularity; $\aleph _ 0$-box topology; $\sigma $-product; -space; -group; pseudo--compact; -stable; -factorizable
UR - http://eudml.org/doc/249344
ER -

References

top
  1. Arhangel'skii A.V., Factorization theorems and function spaces: stability and monolithicity, Soviet Math. Dokl. 26 (1982), 177-181; Russian original in: Dokl. Akad. Nauk SSSR 265 (1982), 1039-1043. (1982) MR0670475
  2. Blair R.L., Hager A.W., z -embeddings in β X × β Y , Set-Theoretic Topology, Academic Press, New York, 1977, pp.47-72. MR0440496
  3. Comfort W.W., Compactness-like properties for generalized weak topological sums, Pacific J. Math. 60 (1975), 31-37. (1975) Zbl0307.54016MR0431088
  4. Comfort W.W., Robertson L., Extremal phenomena in certain classes of totally bounded groups, Dissertationes Math. 272 (1988), 1-48. (1988) Zbl0703.22002MR0959432
  5. Comfort W.W., Ross K.A., Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483-496. (1966) Zbl0214.28502MR0207886
  6. Engelking R., General Topology, Heldermann Verlag, 1989. Zbl0684.54001MR1039321
  7. Hernández C., Tkachenko M., Subgroups of -factorizable groups, Comment. Math. Univ. Carolinae 39 (1998), 371-378. (1998) MR1651979
  8. Hernández S., Algebras of real-valued continuous functions in product spaces, Topology Appl. 22 (1986), 33-42. (1986) MR0831179
  9. Noble M., A note on z -closed projection, Proc. Amer. Math. Soc. 23 (1969), 73-76. (1969) MR0246271
  10. Noble M., Products with closed projections, Trans. Amer. Math. Soc. 140 (1969), 381-391. (1969) Zbl0192.59701MR0250261
  11. Novak J., On the Cartesian product of two compact spaces, Fund. Math. 40 (1953), 106-112. (1953) Zbl0053.12404MR0060212
  12. Schepin E.V., Real-valued functions and canonical sets in Tychonoff products and topological groups, Russian Math. Surveys 31 (1976), 19-30. (1976) 
  13. Tkachenko M., Subgroups, quotient groups and products of -factorizable groups, Topology Proc. 16 (1991), 201-231. (1991) MR1206464
  14. Tkachenko M., Introduction to topological groups, Topology Appl. 86 (1998), 179-231. (1998) Zbl0955.54013MR1623960
  15. Tkachenko M., -factorizable groups and subgroups of Lindelöf P -groups, submitted. Zbl1039.54020

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.