Subgroups and products of -factorizable -groups
Constancio Hernández; Mihail G. Tkachenko
Commentationes Mathematicae Universitatis Carolinae (2004)
- Volume: 45, Issue: 1, page 153-167
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topHernández, Constancio, and Tkachenko, Mihail G.. "Subgroups and products of $\mathbb {R}$-factorizable $P$-groups." Commentationes Mathematicae Universitatis Carolinae 45.1 (2004): 153-167. <http://eudml.org/doc/249344>.
@article{Hernández2004,
abstract = {We show that every subgroup of an $\mathbb \{R\}$-factorizable abelian $P$-group is topologically isomorphic to a closed subgroup of another $\mathbb \{R\}$-factorizable abelian $P$-group. This implies that closed subgroups of $\mathbb \{R\}$-factorizable $P$-groups are not necessarily $\mathbb \{R\}$-factorizable. We also prove that if a Hausdorff space $Y$ of countable pseudocharacter is a continuous image of a product $X=\prod _\{i\in I\}X_i$ of $P$-spaces and the space $X$ is pseudo-$\omega _1$-compact, then $nw(Y)\le \aleph _0$. In particular, direct products of $\mathbb \{R\}$-factorizable $P$-groups are $\mathbb \{R\}$-factorizable and $\omega $-stable.},
author = {Hernández, Constancio, Tkachenko, Mihail G.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$P$-space; $P$-group; pseudo-$\omega _1$-compact; $\omega $-stable; $\mathbb \{R\}$-factorizable; $\aleph _0$-bounded; pseudocharacter; cellularity; $\aleph _ 0$-box topology; $\sigma $-product; -space; -group; pseudo--compact; -stable; -factorizable},
language = {eng},
number = {1},
pages = {153-167},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Subgroups and products of $\mathbb \{R\}$-factorizable $P$-groups},
url = {http://eudml.org/doc/249344},
volume = {45},
year = {2004},
}
TY - JOUR
AU - Hernández, Constancio
AU - Tkachenko, Mihail G.
TI - Subgroups and products of $\mathbb {R}$-factorizable $P$-groups
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2004
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 45
IS - 1
SP - 153
EP - 167
AB - We show that every subgroup of an $\mathbb {R}$-factorizable abelian $P$-group is topologically isomorphic to a closed subgroup of another $\mathbb {R}$-factorizable abelian $P$-group. This implies that closed subgroups of $\mathbb {R}$-factorizable $P$-groups are not necessarily $\mathbb {R}$-factorizable. We also prove that if a Hausdorff space $Y$ of countable pseudocharacter is a continuous image of a product $X=\prod _{i\in I}X_i$ of $P$-spaces and the space $X$ is pseudo-$\omega _1$-compact, then $nw(Y)\le \aleph _0$. In particular, direct products of $\mathbb {R}$-factorizable $P$-groups are $\mathbb {R}$-factorizable and $\omega $-stable.
LA - eng
KW - $P$-space; $P$-group; pseudo-$\omega _1$-compact; $\omega $-stable; $\mathbb {R}$-factorizable; $\aleph _0$-bounded; pseudocharacter; cellularity; $\aleph _ 0$-box topology; $\sigma $-product; -space; -group; pseudo--compact; -stable; -factorizable
UR - http://eudml.org/doc/249344
ER -
References
top- Arhangel'skii A.V., Factorization theorems and function spaces: stability and monolithicity, Soviet Math. Dokl. 26 (1982), 177-181; Russian original in: Dokl. Akad. Nauk SSSR 265 (1982), 1039-1043. (1982) MR0670475
- Blair R.L., Hager A.W., -embeddings in , Set-Theoretic Topology, Academic Press, New York, 1977, pp.47-72. MR0440496
- Comfort W.W., Compactness-like properties for generalized weak topological sums, Pacific J. Math. 60 (1975), 31-37. (1975) Zbl0307.54016MR0431088
- Comfort W.W., Robertson L., Extremal phenomena in certain classes of totally bounded groups, Dissertationes Math. 272 (1988), 1-48. (1988) Zbl0703.22002MR0959432
- Comfort W.W., Ross K.A., Pseudocompactness and uniform continuity in topological groups, Pacific J. Math. 16 (1966), 483-496. (1966) Zbl0214.28502MR0207886
- Engelking R., General Topology, Heldermann Verlag, 1989. Zbl0684.54001MR1039321
- Hernández C., Tkachenko M., Subgroups of -factorizable groups, Comment. Math. Univ. Carolinae 39 (1998), 371-378. (1998) MR1651979
- Hernández S., Algebras of real-valued continuous functions in product spaces, Topology Appl. 22 (1986), 33-42. (1986) MR0831179
- Noble M., A note on -closed projection, Proc. Amer. Math. Soc. 23 (1969), 73-76. (1969) MR0246271
- Noble M., Products with closed projections, Trans. Amer. Math. Soc. 140 (1969), 381-391. (1969) Zbl0192.59701MR0250261
- Novak J., On the Cartesian product of two compact spaces, Fund. Math. 40 (1953), 106-112. (1953) Zbl0053.12404MR0060212
- Schepin E.V., Real-valued functions and canonical sets in Tychonoff products and topological groups, Russian Math. Surveys 31 (1976), 19-30. (1976)
- Tkachenko M., Subgroups, quotient groups and products of -factorizable groups, Topology Proc. 16 (1991), 201-231. (1991) MR1206464
- Tkachenko M., Introduction to topological groups, Topology Appl. 86 (1998), 179-231. (1998) Zbl0955.54013MR1623960
- Tkachenko M., -factorizable groups and subgroups of Lindelöf -groups, submitted. Zbl1039.54020
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.