On the Lipschitz operator algebras

A. Ebadian; A. A. Shokri

Archivum Mathematicum (2009)

  • Volume: 045, Issue: 3, page 213-222
  • ISSN: 0044-8753

Abstract

top
In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an α -Lipschitz operator from a compact metric space into a Banach space A is defined and characterized in a natural way in the sence that F : K A is a α -Lipschitz operator if and only if for each σ X * the mapping σ F is a α -Lipschitz function. The Lipschitz operators algebras L α ( K , A ) and l α ( K , A ) are developed here further, and we study their amenability and weak amenability of these algebras. Moreover, we prove an interesting result that L α ( K , A ) and l α ( K , A ) are isometrically isomorphic to L α ( K ) ˇ A and l α ( K ) ˇ A respectively. Also we study homomorphisms on the L A α ( X , B ) .

How to cite

top

Ebadian, A., and Shokri, A. A.. "On the Lipschitz operator algebras." Archivum Mathematicum 045.3 (2009): 213-222. <http://eudml.org/doc/250687>.

@article{Ebadian2009,
abstract = {In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an $\alpha $-Lipschitz operator from a compact metric space into a Banach space $A$ is defined and characterized in a natural way in the sence that $F:K\rightarrow A$ is a $\alpha $-Lipschitz operator if and only if for each $\sigma \in X^*$ the mapping $\sigma \circ F$ is a $\alpha $-Lipschitz function. The Lipschitz operators algebras $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are developed here further, and we study their amenability and weak amenability of these algebras. Moreover, we prove an interesting result that $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are isometrically isomorphic to $L^\{\alpha \}(K)\check\{\otimes \}A$ and $l^\{\alpha \}(K)\check\{\otimes \}A$ respectively. Also we study homomorphisms on the $L^\alpha _A(X,B)$.},
author = {Ebadian, A., Shokri, A. A.},
journal = {Archivum Mathematicum},
keywords = {Lipschitz algebras; amenability; homomorphism; Lipschitz algebra; amenability; homomorphism},
language = {eng},
number = {3},
pages = {213-222},
publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},
title = {On the Lipschitz operator algebras},
url = {http://eudml.org/doc/250687},
volume = {045},
year = {2009},
}

TY - JOUR
AU - Ebadian, A.
AU - Shokri, A. A.
TI - On the Lipschitz operator algebras
JO - Archivum Mathematicum
PY - 2009
PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno
VL - 045
IS - 3
SP - 213
EP - 222
AB - In a recent paper by H. X. Cao, J. H. Zhang and Z. B. Xu an $\alpha $-Lipschitz operator from a compact metric space into a Banach space $A$ is defined and characterized in a natural way in the sence that $F:K\rightarrow A$ is a $\alpha $-Lipschitz operator if and only if for each $\sigma \in X^*$ the mapping $\sigma \circ F$ is a $\alpha $-Lipschitz function. The Lipschitz operators algebras $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are developed here further, and we study their amenability and weak amenability of these algebras. Moreover, we prove an interesting result that $L^\alpha (K,A)$ and $l^\alpha (K,A)$ are isometrically isomorphic to $L^{\alpha }(K)\check{\otimes }A$ and $l^{\alpha }(K)\check{\otimes }A$ respectively. Also we study homomorphisms on the $L^\alpha _A(X,B)$.
LA - eng
KW - Lipschitz algebras; amenability; homomorphism; Lipschitz algebra; amenability; homomorphism
UR - http://eudml.org/doc/250687
ER -

References

top
  1. Alimohammadi, D., Ebadian, A., Headberg’s theorem in real Lipschitz algebras, Indian J. Pure Appl. Math. 32 (2001), 1479–1493. (2001) MR1878062
  2. Bade, W. G., Curtis, P. C., Dales, H. G., Amenability and weak amenability for Berurling and Lipschitz algebras, Proc. London Math. Soc. 55 (3) (1987), 359–377. (1987) MR0896225
  3. Cao, H. X., Xu, Z. B., Some properties of Lipschitz- α operators, Acta Math. Sin. (Engl. Ser.) 45 (2) (2002), 279–286. (2002) MR1928136
  4. Cao, H. X., Zhang, J. H., Xu, Z. B., 10.1007/s10114-005-0727-x, Acta Math. Sin. (Engl. Ser.) 22 (3) (2006), 671–678. (2006) MR2219676DOI10.1007/s10114-005-0727-x
  5. Dales, H. G., Banach Algebras and Automatic Continuty, Clarendon Press, Oxford, 2000. (2000) MR1816726
  6. Ebadian, A., Prime ideals in Lipschitz algebras of finite differentable function, Honam Math. J. 22 (2000), 21–30. (2000) MR1779197
  7. Honary, T. G, Mahyar, H., 10.2989/16073600009485953, Quaest. Math. 23 (2000), 13–19. (2000) Zbl0963.46034MR1796246DOI10.2989/16073600009485953
  8. Johnson, B. E., Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972). (1972) Zbl0256.18014MR0374934
  9. Johnson, B. E., 10.2140/pjm.1974.51.177, Pacific J. Math. 51 (1975), 177–186. (1975) MR0346503DOI10.2140/pjm.1974.51.177
  10. Runde, V., Lectures on Amenability, Springer, 2001. (2001) MR1874893
  11. Sherbert, D. R., 10.2140/pjm.1963.13.1387, Pacific J. Math. 3 (1963), 1387–1399. (1963) Zbl0121.10203MR0156214DOI10.2140/pjm.1963.13.1387
  12. Sherbert, D. R., 10.1090/S0002-9947-1964-0161177-1, Trans. Amer. Math. Soc. 111 (1964), 240–272. (1964) Zbl0121.10204MR0161177DOI10.1090/S0002-9947-1964-0161177-1
  13. Weaver, N., Subalgebras of little Lipschitz algebras, Pacific J. Math. 173 (1996), 283–293. (1996) Zbl0846.54013MR1387803
  14. Weaver, N., Lipschitz Algebras, World Scientific Publishing Co., Inc., River Edge, NJ, 1999. (1999) Zbl0936.46002MR1832645

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.