The optimal perturbation bounds for the weighted Moore-Penrose inverse.
Xu, Wei-Wei; Cai, Li-Xia; Li, Wen
ELA. The Electronic Journal of Linear Algebra [electronic only] (2011)
- Volume: 22, page 521-538
- ISSN: 1081-3810
Access Full Article
topHow to cite
topXu, Wei-Wei, Cai, Li-Xia, and Li, Wen. "The optimal perturbation bounds for the weighted Moore-Penrose inverse.." ELA. The Electronic Journal of Linear Algebra [electronic only] 22 (2011): 521-538. <http://eudml.org/doc/227123>.
@article{Xu2011,
author = {Xu, Wei-Wei, Cai, Li-Xia, Li, Wen},
journal = {ELA. The Electronic Journal of Linear Algebra [electronic only]},
keywords = {weighted Moore-Penrose inverse; weighted unitary invariant norm; weighted Q-norm; weighted F-norm; perturbation bounds},
language = {eng},
pages = {521-538},
publisher = {ILAS - The International Linear Algebra Society c/o Daniel Hershkowitz, Department of Mathematics, Technion - Israel Institute of Techonolgy},
title = {The optimal perturbation bounds for the weighted Moore-Penrose inverse.},
url = {http://eudml.org/doc/227123},
volume = {22},
year = {2011},
}
TY - JOUR
AU - Xu, Wei-Wei
AU - Cai, Li-Xia
AU - Li, Wen
TI - The optimal perturbation bounds for the weighted Moore-Penrose inverse.
JO - ELA. The Electronic Journal of Linear Algebra [electronic only]
PY - 2011
PB - ILAS - The International Linear Algebra Society c/o Daniel Hershkowitz, Department of Mathematics, Technion - Israel Institute of Techonolgy
VL - 22
SP - 521
EP - 538
LA - eng
KW - weighted Moore-Penrose inverse; weighted unitary invariant norm; weighted Q-norm; weighted F-norm; perturbation bounds
UR - http://eudml.org/doc/227123
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.