On a higher-order Hardy inequality

David Eric Edmunds; Jiří Rákosník

Mathematica Bohemica (1999)

  • Volume: 124, Issue: 2-3, page 113-121
  • ISSN: 0862-7959

Abstract

top
The Hardy inequality Ω | u ( x ) | p d ( x ) - p x ¨ c Ω | u ( x ) | p x ¨ with d ( x ) = dist ( x , Ω ) holds for u C 0 ( Ω ) if Ω n is an open set with a sufficiently smooth boundary and if 1 < p < . P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for p = 1 .

How to cite

top

Edmunds, David Eric, and Rákosník, Jiří. "On a higher-order Hardy inequality." Mathematica Bohemica 124.2-3 (1999): 113-121. <http://eudml.org/doc/248453>.

@article{Edmunds1999,
abstract = {The Hardy inequality $\int _\Omega |u(x)|^pd(x)^\{-p\}\ddot\{x\}\le c\int _\Omega |\nabla u(x)|^p\ddot\{x\}$ with $d(x)=\operatorname\{dist\}(x,\partial \Omega )$ holds for $u\in C^\infty _0(\Omega )$ if $\Omega \subset \mathbb \{R\}^n$ is an open set with a sufficiently smooth boundary and if $1<p<\infty $. P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for $p=1$.},
author = {Edmunds, David Eric, Rákosník, Jiří},
journal = {Mathematica Bohemica},
keywords = {Hardy inequality; capacity; maximal function; Sobolev space; $p$-thick set; Hardy inequality; capacity; -thick set; maximal function; Sobolev space},
language = {eng},
number = {2-3},
pages = {113-121},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a higher-order Hardy inequality},
url = {http://eudml.org/doc/248453},
volume = {124},
year = {1999},
}

TY - JOUR
AU - Edmunds, David Eric
AU - Rákosník, Jiří
TI - On a higher-order Hardy inequality
JO - Mathematica Bohemica
PY - 1999
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 124
IS - 2-3
SP - 113
EP - 121
AB - The Hardy inequality $\int _\Omega |u(x)|^pd(x)^{-p}\ddot{x}\le c\int _\Omega |\nabla u(x)|^p\ddot{x}$ with $d(x)=\operatorname{dist}(x,\partial \Omega )$ holds for $u\in C^\infty _0(\Omega )$ if $\Omega \subset \mathbb {R}^n$ is an open set with a sufficiently smooth boundary and if $1<p<\infty $. P. Hajlasz proved the pointwise counterpart to this inequality involving a maximal function of Hardy-Littlewood type on the right hand side and, as a consequence, obtained the integral Hardy inequality. We extend these results for gradients of higher order and also for $p=1$.
LA - eng
KW - Hardy inequality; capacity; maximal function; Sobolev space; $p$-thick set; Hardy inequality; capacity; -thick set; maximal function; Sobolev space
UR - http://eudml.org/doc/248453
ER -

References

top
  1. D. R. Adams L. I. Hedberg, Function spaces and potential theory, Springer, Berlin, 1996. (1996) MR1411441
  2. D. E. Edmunds H. Triebel, Function spaces, entropy numbers and differential operators, Cambridge Tracts in Mathematics, vol. 120, Cambridge University Press, Cambridge, 1996. (1996) MR1410258
  3. D. Gilbarg N. S. Trudinger, Elliptic partial differential equations of second order, (2nd ed.), Springer, Berlin, 1983. (1983) MR0737190
  4. P. Hajlasz, 10.1090/S0002-9939-99-04495-0, Proc. Amer. Math. Soc. 127 (1999), 417-423. (1999) Zbl0911.31005MR1458875DOI10.1090/S0002-9939-99-04495-0
  5. J. Heinonen T. Kilpeläinen O. Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Science Publications, Clarendon. Press, Oxford, 1993. (1993) MR1207810
  6. J. Kinnunen O. Martio, 10.4310/MRL.1997.v4.n4.a6, Math. Res. Lett. 4 (1997), no. 4, 489-500. (1997) MR1470421DOI10.4310/MRL.1997.v4.n4.a6
  7. J. L. Lewis, 10.1090/S0002-9947-1988-0946438-4, Trans. Amer. Math. Soc. 308 (1988), no. 1, 177-196. (1988) Zbl0668.31002MR0946438DOI10.1090/S0002-9947-1988-0946438-4
  8. V. G. Maz'ya, Sobolev spaces, Springer, Berlin, 1985. (1985) Zbl0727.46017MR0817985
  9. P. Mikkonen, On the Wolff potential and quasilinear elliptic equations involving measures, Ann. Acad. Sci.Fenn.Ser. A.I. Math, Dissertationes 104 (1996), 1-71. (1996) Zbl0860.35041MR1386213
  10. B. Opic A. Kufner, Hardy-type inequalities, Pitman Research Notes in Math. Series 219, Longman Sci. &Tech., Harlow, 1990. (1990) MR1069756
  11. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, N.J., 1970. (1970) Zbl0207.13501MR0290095
  12. A. Wannebo, 10.1090/S0002-9939-1990-1010807-1, Proc. Amer. Math. Soc. 109 (1990), no. 1, 85-95. (1990) Zbl0715.26009MR1010807DOI10.1090/S0002-9939-1990-1010807-1

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.