Higher monotonicity properties of i -th derivatives of solutions of y ' ' + a ( x ) y ' + b ( x ) y = 0

Elena Pavlíková

Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika (1982)

  • Volume: 21, Issue: 1, page 69-78
  • ISSN: 0231-9721

How to cite

top

Pavlíková, Elena. "Higher monotonicity properties of $i$-th derivatives of solutions of $y^{\prime \prime } + a(x) y^{\prime } + b(x) y = 0$." Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika 21.1 (1982): 69-78. <http://eudml.org/doc/23400>.

@article{Pavlíková1982,
author = {Pavlíková, Elena},
journal = {Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika},
keywords = {second order linear differential equation; monotonicity properties of i- th derivative},
language = {eng},
number = {1},
pages = {69-78},
publisher = {Palacký University Olomouc},
title = {Higher monotonicity properties of $i$-th derivatives of solutions of $y^\{\prime \prime \} + a(x) y^\{\prime \} + b(x) y = 0$},
url = {http://eudml.org/doc/23400},
volume = {21},
year = {1982},
}

TY - JOUR
AU - Pavlíková, Elena
TI - Higher monotonicity properties of $i$-th derivatives of solutions of $y^{\prime \prime } + a(x) y^{\prime } + b(x) y = 0$
JO - Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika
PY - 1982
PB - Palacký University Olomouc
VL - 21
IS - 1
SP - 69
EP - 78
LA - eng
KW - second order linear differential equation; monotonicity properties of i- th derivative
UR - http://eudml.org/doc/23400
ER -

References

top
  1. M. Háčik, Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation y ' ' + q ( t ) y = 0 with regard to the basis α , β , Arch. Math. 8, Brno, (1972), 79-83. (1972) MR0326063
  2. M. Laitoch, L’équation associeé dans la théorie des transformations des équations différentielles du second ordre, Acta Univ. Palack. Olomucensis, TOM 12 (1963), 45-62. (1963) Zbl0256.34005MR0276527
  3. L. Lorch M. Muldoon P. Szego, Higher monotonicity properties of certain Sturm-Liouville functions. IV, Canad. Journal of Math., XXIV (1972), 349-368. (1972) MR0298113
  4. E. Pavlíková, Higher monotonicity properties of certain Sturm-Liouville functions, Archivum Mathematicum, Brno, (to appear). MR0672321
  5. J. Vosmanský, Certain higher monotonicity properties of Bessel functions, Arch. Math. 1, Brno, (1977), 55-64. (1977) MR0463571
  6. J. Vosmanský, Certain higher monotonicity properties of i-th derivatives of solutions of y ' ' + a ( t ) y ' + b ( t ) y = 0 , Arch. Math. 2, Brno, (1974), 87-102. (1974) MR0399578

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.