# Monotonicity properties of the linear combination of derivatives of some special functions

Archivum Mathematicum (1985)

- Volume: 021, Issue: 3, page 147-157
- ISSN: 0044-8753

## Access Full Article

top## How to cite

topDošlá, Zuzana. "Monotonicity properties of the linear combination of derivatives of some special functions." Archivum Mathematicum 021.3 (1985): 147-157. <http://eudml.org/doc/18164>.

@article{Došlá1985,

author = {Došlá, Zuzana},

journal = {Archivum Mathematicum},

keywords = {Airy functions; monotonicity; cylinder functions},

language = {eng},

number = {3},

pages = {147-157},

publisher = {Department of Mathematics, Faculty of Science of Masaryk University, Brno},

title = {Monotonicity properties of the linear combination of derivatives of some special functions},

url = {http://eudml.org/doc/18164},

volume = {021},

year = {1985},

}

TY - JOUR

AU - Došlá, Zuzana

TI - Monotonicity properties of the linear combination of derivatives of some special functions

JO - Archivum Mathematicum

PY - 1985

PB - Department of Mathematics, Faculty of Science of Masaryk University, Brno

VL - 021

IS - 3

SP - 147

EP - 157

LA - eng

KW - Airy functions; monotonicity; cylinder functions

UR - http://eudml.org/doc/18164

ER -

## References

top- M. Háčik, Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation $y"+q\left(t\right)y=0$ with regard to the basis $[\alpha ,\beta ]$, Arch. Math. (Brno) 8, (1972), 79-83. (1972) MR0326063
- E. Pavlíková, Higher monotonicity properties of i-th derivatives of solutions of $y"+a{y}^{\text{\'}}+by=0$, Acta Univ. Palac. Olom., Math. 73 (1982), 69-77. (1982) MR0702609
- S. Staněk J. Vosmanský, Transformations between second order linear differential equations, (to appear).
- J. Vosmanský, Certain higher monotonicity properties of i-th derivatives of solutions of $y"+a\left(t\right){y}^{\text{\'}}+b\left(t\right)y=0$, Arch. Math. (Brno) 2 (1974), 87-102. (1974) MR0399578
- J. Vosmanský, Certain higher monotonicity properties of Bessel functions, Arch. Math. (Brno) 1 (1977), 55-64. (1977) MR0463571
- J. Vosmanský, Some higher monotonicity properties of i-th derivatives of solutions $y"+a\left(t\right){y}^{\text{\'}}+b\left(t\right)y=0$, Ist. mat. U. D., Univ. Firenze, preprint, No. 1972/17. (1972)
- D. V. Widder, The Laplace transform, (Princeton University Press, Princeton, 1941). (1941) Zbl0063.08245MR0005923

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.