On the trichotomy of solutions of a nonlinear second-order vector differential equation

Ján Andres; Jarosław Mikołajski; Jindřich Palát

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1988)

  • Volume: 27, Issue: 1, page 211-224
  • ISSN: 0231-9721

How to cite

top

Andres, Ján, Mikołajski, Jarosław, and Palát, Jindřich. "Über die Trichotomie von Lösungen einer nichtlinearen Vektordifferentialgleichung zweiter Ordnung." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 27.1 (1988): 211-224. <http://eudml.org/doc/23473>.

@article{Andres1988,
author = {Andres, Ján, Mikołajski, Jarosław, Palát, Jindřich},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {bounded solutions},
language = {ger},
number = {1},
pages = {211-224},
publisher = {Palacký University Olomouc},
title = {Über die Trichotomie von Lösungen einer nichtlinearen Vektordifferentialgleichung zweiter Ordnung},
url = {http://eudml.org/doc/23473},
volume = {27},
year = {1988},
}

TY - JOUR
AU - Andres, Ján
AU - Mikołajski, Jarosław
AU - Palát, Jindřich
TI - Über die Trichotomie von Lösungen einer nichtlinearen Vektordifferentialgleichung zweiter Ordnung
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1988
PB - Palacký University Olomouc
VL - 27
IS - 1
SP - 211
EP - 224
LA - ger
KW - bounded solutions
UR - http://eudml.org/doc/23473
ER -

References

top
  1. Ding T., Unbounded solutions of conservative oscillations under roughly periodic perturbations, Chin. Ann. Math. B5, 4, 1984, 687-694. (1984) Zbl0554.34023MR0795476
  2. Ding T., Boundedness of solutions of Duffing's equation, J. Diff. Eqns 61, 2, 1986, 178-207. (1986) Zbl0619.34038MR0823401
  3. Ding T., An answer to Littlewood’s problem on boundedness for super-linear Duffing's equation, Preprint, 1986. (1986) 
  4. Andres O., Palát O., Über die Existenz einer begrenzten und periodischen Lösung der nichtlinearisierte Jacobischen Gleichung mit negativ Definitivem Träger, Acta UPO 88, Math.26, 1987 (im Druck). (1987) Zbl0706.34031MR1033332
  5. Andres J., A useful proposition to nonlinear differential systems with a solution of the prescribed properties, Acta URO 85, Math. 25, 1986, 157-164. (1986) Zbl0641.34036MR0918373
  6. Bebernes O. W., Jackson L. K., Infinite interval boundary value problems for y'' = f(x, y), Duke Math. J. 34, 1, 1967, 39-48. (1967) Zbl0145.33102MR0206386
  7. Kiguradze I. T., On the non-negative non-increasing solutions of non-linear second order differential equations, Ann. Math. Pura Appl. 4, 81, 1969, 162-192. (1969) MR0248398
  8. Abduvaitov, Ch., Někotorye dostatočnye uslovija suščestvovanija periodičeskich i ograničennych rešenij nělinějnych differencialnych uravněnij vtorogo porjadka, Diff. Uгav. 21, 12, 1985, 2027-2036. (1985) MR0821843
  9. Jackson L., Subfunctions and second order ordinary differential inequalities, Adv. Math. 2, 1968, 307-363. (1968) Zbl0197.06401MR0229896
  10. Bernfeld S. R., Lakshmikantham V., An introduction to nonlinear boundary value problems, Academic Press, Inc., New York - London 1974, 44-46. (1974) Zbl0286.34018MR0445048
  11. Schrader K., Second and third order boundary value problems, Proceed. Amer. Math. Soc. 32, 1972, 247-252. (1972) Zbl0212.11303MR0291548
  12. Hille E., On the Landau - Kallman - Rota inequality, J. Approx. Theory 6, 1972, 117-122. (1972) Zbl0238.47007MR0343095
  13. Hartman P., Ordinary differential equations, Wiley, New York, 1964, 429. (1964) Zbl0125.32102MR0171038
  14. Granas A., Guenther R. B., Lee J.W., O'Regan D., Boundary value problems on infinite intervals and semiconductor devices, J. Math. Anal. Appl. 116, 2, 1986, 335-348. (1986) Zbl0594.34019MR0842804

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.