Green's functions for periodic and anti-periodic BVPs to second-order ODEs

Ján Andres; Vladimír Vlček

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1993)

  • Volume: 32, Issue: 1, page 7-16
  • ISSN: 0231-9721

How to cite

top

Andres, Ján, and Vlček, Vladimír. "Green's functions for periodic and anti-periodic BVPs to second-order ODEs." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 32.1 (1993): 7-16. <http://eudml.org/doc/23563>.

@article{Andres1993,
author = {Andres, Ján, Vlček, Vladimír},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {periodic and anti-periodic boundary value problems; Green function; Schauder fixed point theorem},
language = {eng},
number = {1},
pages = {7-16},
publisher = {Palacký University Olomouc},
title = {Green's functions for periodic and anti-periodic BVPs to second-order ODEs},
url = {http://eudml.org/doc/23563},
volume = {32},
year = {1993},
}

TY - JOUR
AU - Andres, Ján
AU - Vlček, Vladimír
TI - Green's functions for periodic and anti-periodic BVPs to second-order ODEs
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1993
PB - Palacký University Olomouc
VL - 32
IS - 1
SP - 7
EP - 16
LA - eng
KW - periodic and anti-periodic boundary value problems; Green function; Schauder fixed point theorem
UR - http://eudml.org/doc/23563
ER -

References

top
  1. Hamedani G.G., Mehri B., Periodic boundary value problem for certain non-linear second order differential equation, Stud. Sci. Math. Hung. 9 (1974), 307-312. (1974) MR0409952
  2. Haraux A., Anti-periodic solutions of some nonlinear evolution equations, Manuscripta Math. 63 (1989), 479-505. (1989) Zbl0684.35010MR0991267
  3. Aizicovici S., Pavel N.H., Anti-periodic solutions to a class of nonlinear differential equations in Hilbert space, J. Funct. Analysis 99 (1991), 387-408. (1991) Zbl0743.34067MR1121619
  4. Aftabizadeh A.R., Aizicovici S., Pavel N.H., Anti-periodic boundary value problems for higher order differential equations in Hilbert spaces, Nonlin. Anal., T.M.A. 18, 3 (1992), 253-267. (1992) Zbl0779.34054MR1148289
  5. Erbe L., Palamides P., Boundary value problems for second order differential systems, J. Math. Anal. Appl. 127 (1987), 80-92. (1987) Zbl0635.34017MR0904211
  6. Palamides P.K., Erbe L.H., Semi-periodic boundary value problems, Diff. Eqns (C. M. Daferemos et al, eds.), LNPAM/118, Dekker, Inc., New York, 1989. (1989) MR1021756
  7. Erbe L.H., Lin X., Wu J., Solvability of boundary value problems for vector differential systems, To appear in Proc. Royal-Soc. Edinbourgh. 
  8. Gaines R.E., Mawhin J., Ordinary differential equations with nonlinear boundary conditions, J. Diff. Eqns 26, 2 (1977) 200-222. (1977) Zbl0326.34021MR0463557
  9. Půža B., On one class of solvable boundary value problems for ordinary differential equations of n-th order, CMUC 30, 3 (1989), 565-577. (1989) MR1031873
  10. Roach G.F., Green’s functions, Cambridge Univ. Press, Cambridge (1982) (1982) Zbl0522.65075
  11. Collatz L., Funkcionální analýza a numerická matematika, SNTL, Praha 1970. (1970) 
  12. Andres J., Vlček V., On four-point regular BVPs for second-order quasilinear ODEs, Acta UPO, Fac. Rer. Nat., Math. XXXI, Vol. 105 (1992), 37-44. (1992) MR1212604
  13. Bihari I., Notes on a nonlinear integral equation, Stud. Sci. Math. Hung. 2 (1967), 1-6. (1967) Zbl0147.10302MR0211231

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.