On the method of Esclangon
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1996)
- Volume: 35, Issue: 1, page 7-20
- ISSN: 0231-9721
Access Full Article
topHow to cite
topReferences
top- Andres J., Lagrange stability of higher-order analogy of damped pendulum equations, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 106, Phys. 31 (1992), 154-159. (1992) Zbl0823.70018
- Andres J., On the problem of Hurwitz for shifted polynomials, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 106, Phys. 31 (1992), 160-164 (Czech). (1992)
- Andres J., Turský T., Asymptotic estimates of solutions and their derivatives of nth-order nonhomogeneous ordinary differential equations with constant coefficients, Discussiones Math. 16, 1 (1996). (1996) MR1429037
- Andres J., Vlček V., Asymptotic behaviour of solutions to the n-th order nonlinear differential equation under forcing, Rend. Ist. Mat. Univ. Trieste 21, 1 (1989), 128-143. (1989) Zbl0753.34020MR1142529
- Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Liapunov Exponents, Nauka, Moscow, 1966 (Russian). (1966)
- Cesari L., Asymptotic Behavior and Stability Problems in Ordinary Differetial Equations, Springer, Berlin, 1959. (1959) MR0118904
- Esclangon E., Sur les intégrales bornées d’une équation différentielle linéaire, C R. Ac. de Sc., Paris 160 (1915), 775-778. (1915)
- Howard J. E., Mackey R. J., Calculation of linear stability boundaries for equilibria of Hamiltonian systems, Phys. Lett. A 122, 6, 7 (1987), 331-334. (1987) MR0897488
- Koutna M., Asymptotic properties of solutions of the fifth-order nonhomogenons differential equations with constant coefficients, Mgr. Thesis, Faculty of Science, Palacký University, Olomouc, 1993 (Czech). (1993)
- Krasnoseľskii M. A., Burd V. Sh., Kolesov, Yu. S., Nonlineаr Almost Periodic Oscillаtions, Nauka, Moscow, 1970 (Russian). (1970)
- Levitan B. M., Almost-Periodic Functions, GITTL, Moscow, 1953 (Russian). (1953) Zbl1222.42002MR0060629
- Perron O., Algebrа II (Theorie der аlgebrаischen Gleichungen), W. de Gruyter & Co., Berlin-Leipzig, 1933. (1933)