On the method of Esclangon

Ján Andres; Tomáš Turský

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (1996)

  • Volume: 35, Issue: 1, page 7-20
  • ISSN: 0231-9721

How to cite

top

Andres, Ján, and Turský, Tomáš. "On the method of Esclangon." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 35.1 (1996): 7-20. <http://eudml.org/doc/23615>.

@article{Andres1996,
author = {Andres, Ján, Turský, Tomáš},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {Esclangon's method; asymptotic estimates; nonhomogeneous equations},
language = {eng},
number = {1},
pages = {7-20},
publisher = {Palacký University Olomouc},
title = {On the method of Esclangon},
url = {http://eudml.org/doc/23615},
volume = {35},
year = {1996},
}

TY - JOUR
AU - Andres, Ján
AU - Turský, Tomáš
TI - On the method of Esclangon
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 1996
PB - Palacký University Olomouc
VL - 35
IS - 1
SP - 7
EP - 20
LA - eng
KW - Esclangon's method; asymptotic estimates; nonhomogeneous equations
UR - http://eudml.org/doc/23615
ER -

References

top
  1. Andres J., Lagrange stability of higher-order analogy of damped pendulum equations, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 106, Phys. 31 (1992), 154-159. (1992) Zbl0823.70018
  2. Andres J., On the problem of Hurwitz for shifted polynomials, Acta Univ. Palacki. Olomuc., Fac. rer. nat. 106, Phys. 31 (1992), 160-164 (Czech). (1992) 
  3. Andres J., Turský T., Asymptotic estimates of solutions and their derivatives of nth-order nonhomogeneous ordinary differential equations with constant coefficients, Discussiones Math. 16, 1 (1996). (1996) MR1429037
  4. Andres J., Vlček V., Asymptotic behaviour of solutions to the n-th order nonlinear differential equation under forcing, Rend. Ist. Mat. Univ. Trieste 21, 1 (1989), 128-143. (1989) Zbl0753.34020MR1142529
  5. Bylov B. F., Vinograd R. E., Grobman D. M., Nemytskii V. V., Theory of Liapunov Exponents, Nauka, Moscow, 1966 (Russian). (1966) 
  6. Cesari L., Asymptotic Behavior and Stability Problems in Ordinary Differetial Equations, Springer, Berlin, 1959. (1959) MR0118904
  7. Esclangon E., Sur les intégrales bornées d’une équation différentielle linéaire, C R. Ac. de Sc., Paris 160 (1915), 775-778. (1915) 
  8. Howard J. E., Mackey R. J., Calculation of linear stability boundaries for equilibria of Hamiltonian systems, Phys. Lett. A 122, 6, 7 (1987), 331-334. (1987) MR0897488
  9. Koutna M., Asymptotic properties of solutions of the fifth-order nonhomogenons differential equations with constant coefficients, Mgr. Thesis, Faculty of Science, Palacký University, Olomouc, 1993 (Czech). (1993) 
  10. Krasnoseľskii M. A., Burd V. Sh., Kolesov, Yu. S., Nonlineаr Almost Periodic Oscillаtions, Nauka, Moscow, 1970 (Russian). (1970) 
  11. Levitan B. M., Almost-Periodic Functions, GITTL, Moscow, 1953 (Russian). (1953) Zbl1222.42002MR0060629
  12. Perron O., Algebrа II (Theorie der аlgebrаischen Gleichungen), W. de Gruyter & Co., Berlin-Leipzig, 1933. (1933) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.