Approximation from the exterior of Carathéodory multifunctions

Carlo Benassi; Andrea Gavioli

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2000)

  • Volume: 39, Issue: 1, page 17-35
  • ISSN: 0231-9721

How to cite

top

Benassi, Carlo, and Gavioli, Andrea. "Approximation from the exterior of Carathéodory multifunctions." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 39.1 (2000): 17-35. <http://eudml.org/doc/23693>.

@article{Benassi2000,
author = {Benassi, Carlo, Gavioli, Andrea},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {measurable multifunction; Lipschitz multifunction; Carathéodory multifunction},
language = {eng},
number = {1},
pages = {17-35},
publisher = {Palacký University Olomouc},
title = {Approximation from the exterior of Carathéodory multifunctions},
url = {http://eudml.org/doc/23693},
volume = {39},
year = {2000},
}

TY - JOUR
AU - Benassi, Carlo
AU - Gavioli, Andrea
TI - Approximation from the exterior of Carathéodory multifunctions
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2000
PB - Palacký University Olomouc
VL - 39
IS - 1
SP - 17
EP - 35
LA - eng
KW - measurable multifunction; Lipschitz multifunction; Carathéodory multifunction
UR - http://eudml.org/doc/23693
ER -

References

top
  1. Andres J., Gabor G., Górniewicz L., Acyclicity of Solution Sets to Functional Inclusions, Nonlin. Anal., (to appear). Zbl1012.34011MR1894303
  2. Aubin J. P., Cellina A., Differential Inclusions. Set-valued Maps and Viability Theory, Springer Verlag, Berlin, 1984. (1984) Zbl0538.34007MR0755330
  3. Benassi C., Gavioli A., Approximation from the exterior of a multifunction with connected values defined on an interval, Atti Sem. Mat. Fis. Univ. Modena 42 (1994), 237-252. (1994) Zbl0873.54021MR1282339
  4. Benassi C., Gavioli A., Approximation from the exterior of multifunctions with connected values, Set-Valued Analysis 2 (1994), 487-503. (1994) Zbl0826.26012MR1308481
  5. Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Lecture Notes in Mathematics 580, Springer Verlag, Berlin, 1977. (1977) Zbl0346.46038MR0467310
  6. De Blasi F., Characterization of certain classes of semicontinuous multifunctions by continuous approximations, J. Math. Anal. Appl. 106 (1985), 1-18. (1985) MR0780314
  7. De Blasi F. S., Myjak J., On the solution sets for differential inclusions, Bull. Polish Acad. Sci. 33 (1985), 17-23. (1985) MR0798723
  8. Deimling K., Multivalued Differential Equations, De Gruyter series in Nonlinear Analysis and Applications, Berlin, 1992. (1992) Zbl0820.34009MR1189795
  9. El Arni A., Multifonctions séparément mesurables et séparément sémicontinues inférieurement, Doctoral thesis, Université des Sciences et techniques du Languedoc, Montpellier, 1986. (1986) 
  10. Gavioli A., Approximation from the exterior of a multifunction and its applications in the "sweeping process", J. Differential Equations 92, 2 (1991), 373-383. (1991) Zbl0744.41018MR1120911
  11. Górniewicz L., Topological approach to differential inclusions, In: Topological Methods in Differential Equations and Inclusions, ed. by A. Granas and M. Frigon, Kluwer Academic Publishers, Dordrecht-Boston-London, 1995. (1995) MR1368672
  12. Haddad G., Topological properties of the sets of solutions for functional differential inclusions, Nonlinear Anal. 5 (1981), 1349-1366. (1981) Zbl0496.34041MR0646220
  13. Ionescu Tulcea C., On the approximation of upper semicontinuous correspondences and the equilibrium of generalized games, J. Math. Anal. Appl. 136 (1988), 267-289. (1988) MR0972598

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.