On the diophantine equation
Stéphane Louboutin; M. F. Newman
Acta Mathematica et Informatica Universitatis Ostraviensis (1998)
- Volume: 06, Issue: 1, page 155-158
 - ISSN: 1804-1388
 
Access Full Article
topHow to cite
topLouboutin, Stéphane, and Newman, M. F.. "On the diophantine equation $xy+yz+zx=d$." Acta Mathematica et Informatica Universitatis Ostraviensis 06.1 (1998): 155-158. <http://eudml.org/doc/23807>.
@article{Louboutin1998,
	author = {Louboutin, Stéphane, Newman, M. F.},
	journal = {Acta Mathematica et Informatica Universitatis Ostraviensis},
	keywords = {ternary quadratic forms; quadratic Diophantine equations; ideal class groups; imaginary quadratic fields},
	language = {eng},
	number = {1},
	pages = {155-158},
	publisher = {University of Ostrava},
	title = {On the diophantine equation $xy+yz+zx=d$},
	url = {http://eudml.org/doc/23807},
	volume = {06},
	year = {1998},
}
TY  - JOUR
AU  - Louboutin, Stéphane
AU  - Newman, M. F.
TI  - On the diophantine equation $xy+yz+zx=d$
JO  - Acta Mathematica et Informatica Universitatis Ostraviensis
PY  - 1998
PB  - University of Ostrava
VL  - 06
IS  - 1
SP  - 155
EP  - 158
LA  - eng
KW  - ternary quadratic forms; quadratic Diophantine equations; ideal class groups; imaginary quadratic fields
UR  - http://eudml.org/doc/23807
ER  - 
References
top- T. Cai, On the diophantine equation , Publ. Math. Debrecen 45 (1994), 131-132. (1994) Zbl0864.11015MR1291808
 - D. Cox, Primes of the form , John Wiley & Sons (1989). (1989) MR1028322
 - N. A. Hall, 10.1007/BF01210641, Math. Zeit. 44 (1938), 85-90. (1938) DOI10.1007/BF01210641
 - Al-Zaid Hassan B. Brindza, Á. Pintér, 10.4153/CMB-1996-024-5, Canad. Math. Bull. 39 (1996), 199-202. (1996) MR1390355DOI10.4153/CMB-1996-024-5
 - K. Kovács, About some positive solutions of the diophantine equation , Publ Math. Debrecen 40 (1992), 207-210. (1992) MR1181363
 - S. Louboutin, Minorations (sous ľhypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires, Application, C. R. Acad. Sci. Paris 310 (1990), 795-800. (1990) MR1058499
 - L. J. Mordell, Diophantine equations, Chapter 30, Section 2 : The equation xy + yz + zx = d, Academic Press (1969). (1969) Zbl0188.34503MR0249355
 - T. Tatuzawa, On a theorem of Siegel, Japan J. Math. 21 (1951), 163-178. (1951) Zbl0054.02302MR0051262
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.