On Lucas pseudoprimes of the form a x 2 + b x y + c y 2 in arithmetic progression A X + B with a prescribed value of the Jacobi symbol

Andrzej Rotkiewicz

Acta Mathematica et Informatica Universitatis Ostraviensis (2002)

  • Volume: 10, Issue: 1, page 103-109
  • ISSN: 1804-1388

How to cite

top

Rotkiewicz, Andrzej. "On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol." Acta Mathematica et Informatica Universitatis Ostraviensis 10.1 (2002): 103-109. <http://eudml.org/doc/23854>.

@article{Rotkiewicz2002,
author = {Rotkiewicz, Andrzej},
journal = {Acta Mathematica et Informatica Universitatis Ostraviensis},
keywords = {pseudoprime; Lucas pseudoprime; strong Lucas pseudoprime; Lucas sequences},
language = {eng},
number = {1},
pages = {103-109},
publisher = {University of Ostrava},
title = {On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol},
url = {http://eudml.org/doc/23854},
volume = {10},
year = {2002},
}

TY - JOUR
AU - Rotkiewicz, Andrzej
TI - On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol
JO - Acta Mathematica et Informatica Universitatis Ostraviensis
PY - 2002
PB - University of Ostrava
VL - 10
IS - 1
SP - 103
EP - 109
LA - eng
KW - pseudoprime; Lucas pseudoprime; strong Lucas pseudoprime; Lucas sequences
UR - http://eudml.org/doc/23854
ER -

References

top
  1. BACHMANN P., Zahlentheorie. 2, Die analytische Zahlentheorie, Tenbner, Leipzig, 1894. 
  2. Baillie R., Wagstaff, Jr. S., 10.1090/S0025-5718-1980-0583518-6, Math. Comp. 35 (1980), 1391-1417. (1980) Zbl0458.10003MR0583518DOI10.1090/S0025-5718-1980-0583518-6
  3. Bilu Yu., Hanrot G., Vouter P. M., Existence of primitive divisors of Lucas and Lehmer numbers, (with an appendix by Mignott M.), J. Reine Angew. Math. 539 (2001), 75-122. MR1863855
  4. Crandall R., Pomerance C., Prince Numbers, A Computational Perspective, Springer-Verlag, New York, 2001. MR1821158
  5. Dickson L. E., History of the Theory of Numbers, Vol. I, Chelsea Publishing Company, New York, 1952. (1952) 
  6. Durst L. K., 10.2140/pjm.1959.9.437, Pacific J. Math. 9 (1959), 437-441. (1959) Zbl0091.04204MR0108465DOI10.2140/pjm.1959.9.437
  7. Erdös P., Kiss P., Sárközy A., Lower bound for the counting function, Math. Comp. 51 (1988), 315-323. (1988) MR0942158
  8. Lehmer D. H., 10.2307/1968235, Ann. of Math. (2) 31 (1930), 419-448. (1930) MR1502953DOI10.2307/1968235
  9. Meyer A., Ueber einen Satz von Dinchlet, J. reine angew. Math. 103 (1888), 98-117. 
  10. Narkiewicz W., The Development of Prime Number Theory: from Euclid to Hardy and Littlewood, Springer, 2000. Zbl0942.11002MR1756780
  11. Rotkiewicz A., On the pseudoprimes of the form ax + b with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 349-354. (1972) Zbl0249.10012MR0309843
  12. Rotkiewicz A., On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L,Q in arithmetic progression, Math. Comp. 39 (1982), 239-247. (1982) MR0658229
  13. Rotkoewicz A., On strong pseudoprimes in the case of negative discriminant in arithmetic progressions, Acta Arith. 68 (1994), 145-151. (1994) MR1305197
  14. Rotkiewicz A., On Lucas pseudoprimes of the form a x 2 + b x y + c y 2 , Applications of Fibonacci Numbers, Volume 6, Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, Dordrecht, 1996, 409-421. (1996) Zbl0852.11006MR1393474
  15. Rotkiewicz A., A. Schinzel, Sur les nombres pseudopremiers de la forme a x 2 + b x y + c y 2 , C.R. Acad. Sci. Paris, 258 (1964), 3617-3620. (1964) MR0161828
  16. Rotkiewicz A., Schinzel A., On Lucas pseudoprimes with a prescribed value of the Jacobi symbol, Bull. Polish Acad. Sci. Math. 48 (2000), 77-80. Zbl0951.11002MR1751157
  17. Schinzel A., On primitive prime factors of a n - b n , Proc. Cambridge Philos. Soc. 58 (1962), 555-562. (1962) MR0143728
  18. Schnitzel A., 10.1007/BF02591623, Ark. Math. 4 (1962), 413-416. (1962) MR0139567DOI10.1007/BF02591623
  19. Stewart C. L., Primitive divisors of Lucas and Lehmer sequences, Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, eds.), Academic Press, New York, 1997, pp. 79-92. (1997) MR0476628
  20. Ward M., 10.2307/1969677, Ann. of Math. (2) 62 (1955), 230-236. (1955) MR0071446DOI10.2307/1969677

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.