On Lucas pseudoprimes of the form in arithmetic progression with a prescribed value of the Jacobi symbol
Acta Mathematica et Informatica Universitatis Ostraviensis (2002)
- Volume: 10, Issue: 1, page 103-109
- ISSN: 1804-1388
Access Full Article
topHow to cite
topRotkiewicz, Andrzej. "On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol." Acta Mathematica et Informatica Universitatis Ostraviensis 10.1 (2002): 103-109. <http://eudml.org/doc/23854>.
@article{Rotkiewicz2002,
author = {Rotkiewicz, Andrzej},
journal = {Acta Mathematica et Informatica Universitatis Ostraviensis},
keywords = {pseudoprime; Lucas pseudoprime; strong Lucas pseudoprime; Lucas sequences},
language = {eng},
number = {1},
pages = {103-109},
publisher = {University of Ostrava},
title = {On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol},
url = {http://eudml.org/doc/23854},
volume = {10},
year = {2002},
}
TY - JOUR
AU - Rotkiewicz, Andrzej
TI - On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol
JO - Acta Mathematica et Informatica Universitatis Ostraviensis
PY - 2002
PB - University of Ostrava
VL - 10
IS - 1
SP - 103
EP - 109
LA - eng
KW - pseudoprime; Lucas pseudoprime; strong Lucas pseudoprime; Lucas sequences
UR - http://eudml.org/doc/23854
ER -
References
top- BACHMANN P., Zahlentheorie. 2, Die analytische Zahlentheorie, Tenbner, Leipzig, 1894.
- Baillie R., Wagstaff, Jr. S., 10.1090/S0025-5718-1980-0583518-6, Math. Comp. 35 (1980), 1391-1417. (1980) Zbl0458.10003MR0583518DOI10.1090/S0025-5718-1980-0583518-6
- Bilu Yu., Hanrot G., Vouter P. M., Existence of primitive divisors of Lucas and Lehmer numbers, (with an appendix by Mignott M.), J. Reine Angew. Math. 539 (2001), 75-122. MR1863855
- Crandall R., Pomerance C., Prince Numbers, A Computational Perspective, Springer-Verlag, New York, 2001. MR1821158
- Dickson L. E., History of the Theory of Numbers, Vol. I, Chelsea Publishing Company, New York, 1952. (1952)
- Durst L. K., 10.2140/pjm.1959.9.437, Pacific J. Math. 9 (1959), 437-441. (1959) Zbl0091.04204MR0108465DOI10.2140/pjm.1959.9.437
- Erdös P., Kiss P., Sárközy A., Lower bound for the counting function, Math. Comp. 51 (1988), 315-323. (1988) MR0942158
- Lehmer D. H., 10.2307/1968235, Ann. of Math. (2) 31 (1930), 419-448. (1930) MR1502953DOI10.2307/1968235
- Meyer A., Ueber einen Satz von Dinchlet, J. reine angew. Math. 103 (1888), 98-117.
- Narkiewicz W., The Development of Prime Number Theory: from Euclid to Hardy and Littlewood, Springer, 2000. Zbl0942.11002MR1756780
- Rotkiewicz A., On the pseudoprimes of the form ax + b with respect to the sequence of Lehmer, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 349-354. (1972) Zbl0249.10012MR0309843
- Rotkiewicz A., On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L,Q in arithmetic progression, Math. Comp. 39 (1982), 239-247. (1982) MR0658229
- Rotkoewicz A., On strong pseudoprimes in the case of negative discriminant in arithmetic progressions, Acta Arith. 68 (1994), 145-151. (1994) MR1305197
- Rotkiewicz A., On Lucas pseudoprimes of the form , Applications of Fibonacci Numbers, Volume 6, Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, Dordrecht, 1996, 409-421. (1996) Zbl0852.11006MR1393474
- Rotkiewicz A., A. Schinzel, Sur les nombres pseudopremiers de la forme , C.R. Acad. Sci. Paris, 258 (1964), 3617-3620. (1964) MR0161828
- Rotkiewicz A., Schinzel A., On Lucas pseudoprimes with a prescribed value of the Jacobi symbol, Bull. Polish Acad. Sci. Math. 48 (2000), 77-80. Zbl0951.11002MR1751157
- Schinzel A., On primitive prime factors of , Proc. Cambridge Philos. Soc. 58 (1962), 555-562. (1962) MR0143728
- Schnitzel A., 10.1007/BF02591623, Ark. Math. 4 (1962), 413-416. (1962) MR0139567DOI10.1007/BF02591623
- Stewart C. L., Primitive divisors of Lucas and Lehmer sequences, Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, eds.), Academic Press, New York, 1997, pp. 79-92. (1997) MR0476628
- Ward M., 10.2307/1969677, Ann. of Math. (2) 62 (1955), 230-236. (1955) MR0071446DOI10.2307/1969677
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.