An application of semi-infinite linear programming: approximation of a continuous function by a polynomial

David Bartl

Acta Mathematica Universitatis Ostraviensis (2004)

  • Volume: 12, Issue: 1, page 3-11
  • ISSN: 1804-1388

How to cite

top

Bartl, David. "An application of semi-infinite linear programming: approximation of a continuous function by a polynomial." Acta Mathematica Universitatis Ostraviensis 12.1 (2004): 3-11. <http://eudml.org/doc/23877>.

@article{Bartl2004,
author = {Bartl, David},
journal = {Acta Mathematica Universitatis Ostraviensis},
language = {eng},
number = {1},
pages = {3-11},
publisher = {University of Ostrava},
title = {An application of semi-infinite linear programming: approximation of a continuous function by a polynomial},
url = {http://eudml.org/doc/23877},
volume = {12},
year = {2004},
}

TY - JOUR
AU - Bartl, David
TI - An application of semi-infinite linear programming: approximation of a continuous function by a polynomial
JO - Acta Mathematica Universitatis Ostraviensis
PY - 2004
PB - University of Ostrava
VL - 12
IS - 1
SP - 3
EP - 11
LA - eng
UR - http://eudml.org/doc/23877
ER -

References

top
  1. Duffin R. J., Infinite Programs, In Linear Inequalities and Related Systems. Ed. H. W. KUHN, A. W. Tucker. Princeton: Princeton Univ. Press, 1956, pp. 157-170. (Annals of Mathematics Studies; no. 38.) (1956) Zbl0072.37603MR0087573
  2. HAAR A., Über lineare Ungleichungen, Acta Sci. Math., 1924, vol. 2, pp. 1-14. (1924) 
  3. FAN K., On Systems of Linear Inequalities, In Linear Inequalities and Related Systems. Ed. H. W. Kuhn, A. W. Tucker. Princeton: Princeton Univ. Press, 1956, pp. 99-156. (Annals of Mathematics Studies; no. 38.) (1956) Zbl0072.37602MR0087901
  4. Fan K., Glicksberg I., Hoffman A. J., Systems of Inequalities Involving Convex Functions, Proceedings of the American Mathematical Society, June 1957, vol. 8, pp. 617-622. (1957) Zbl0079.02002MR0087574
  5. Farkas J., Theorie der einfachen Ungleichungen, Journal für die reine und angewandte Mathematik, 1902, vol. 124, pp. 1-27. (1902) 
  6. Grygarová L., Úvod do lineárního programování, [An Introduction to Linear Programming, in Czech.] Praha: SPN, 1975. (1975) 
  7. Craven B. D., Koliha J. J., 10.1137/0508076, SIAM Journal on Mathematical Analysis, November 1977, vol. 8, no. 6, pp. 983-997. (1977) Zbl0408.52006MR0471302DOI10.1137/0508076
  8. Lukeš J., Zápisky z funkcionální analýzy, [Manuscripts on Functional Analysis, in Czech]. 1. vydání. [1st edidion.] Praha: Karolinum, 1998. 2. vydání. [2nd edidion.] Praha: Karolinum, 2002. (1998) 
  9. Prékopa A., 10.2307/2321417, American Mathematical Monthly, August-September 1980, vol. 87, pp. 527-542. (1980) MR0600911DOI10.2307/2321417
  10. Weyl H., Elementare Theorie der konvexen Polyeder, Commentarii Mathematici Helvetici, 1935, vol. 7, pp. 290-306. English translation: The elementary theory of convex polyhedra. In Contributions to the Theory of Games. Volume I. Ed. H. W. Kuhn, A. W. Tucker. Princeton: Princeton Univ. Press, 1950, pp. 3-18. (Annals of Mathematics Studies; no. 24.) (1935) Zbl0011.41104
  11. Problem no. A.318, KöMaL, April 2003, vol. 53, no. 4, p. 255. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.