# Commutativity of *-prime rings with generalized derivations

Rendiconti del Seminario Matematico della Università di Padova (2011)

- Volume: 125, page 71-80
- ISSN: 0041-8994

## Access Full Article

top## How to cite

topAshraf, Mohammad, and Khan, Almas. "Commutativity of *-prime rings with generalized derivations." Rendiconti del Seminario Matematico della Università di Padova 125 (2011): 71-80. <http://eudml.org/doc/239315>.

@article{Ashraf2011,

author = {Ashraf, Mohammad, Khan, Almas},

journal = {Rendiconti del Seminario Matematico della Università di Padova},

keywords = {rings with involution; -prime rings; -Lie ideals; generalized derivations; commutativity theorems},

language = {eng},

pages = {71-80},

publisher = {Seminario Matematico of the University of Padua},

title = {Commutativity of *-prime rings with generalized derivations},

url = {http://eudml.org/doc/239315},

volume = {125},

year = {2011},

}

TY - JOUR

AU - Ashraf, Mohammad

AU - Khan, Almas

TI - Commutativity of *-prime rings with generalized derivations

JO - Rendiconti del Seminario Matematico della Università di Padova

PY - 2011

PB - Seminario Matematico of the University of Padua

VL - 125

SP - 71

EP - 80

LA - eng

KW - rings with involution; -prime rings; -Lie ideals; generalized derivations; commutativity theorems

UR - http://eudml.org/doc/239315

ER -

## References

top- [1] M. Ashraf - A. Ali - S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math., 32 (2) (2007), pp. 415–421. Zbl1141.16020MR2327138
- [2] M. Ashraf - N. Rehman, On commutativity of rings with derivations, Results Math., 42 (2002), pp. 3–8. Zbl1038.16021MR1934218
- [3] J. Bergen - I. N. Herstein - J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), pp. 259–267. Zbl0463.16023MR627439
- [4] H. E. Bell, Some commutativity results involving derivations, Trends in Theory of Rings and Modules, S. T. Rizvi and S. M. A. Zaidi (Eds.), Anamaya Publishers, New Delhi, India (2005), pp. 11–16.
- [5] Bresšar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33 (1991), pp. 89–93. Zbl0731.47037MR1089958
- [6] P. H. Lee - T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica, 11 (1) (1983), pp. 75–80. Zbl0515.16018MR718903
- [7] I. N. Herstein, Topics in ring theory, Univ. Chicago Press, Chicago (1969). Zbl0232.16001MR271135
- [8] L. Oukhtite - S. Salhi, On generalized Derivations of $\sigma $ -prime rings, African Diaspora J. Math., 5 (1) (2006), pp. 19–23. Zbl1132.16028MR2337187
- [9] L. Oukhtite - S. Salhi, Commutativity of $\sigma $ -prime rings, Glasnik Math., 41 (2006), pp. 57–64. Zbl1123.16023MR2242391
- [10] L. Oukhtite - S. Salhi, Lie ideals and derivations of $\sigma -$ prime rings, Int. J. Algebra, 1 (2007), pp. 25–30. Zbl1126.16019MR2327641
- [11] L. Oukhtite - S. Salhi, Centralizing automorphisms and Jordan left derivations of $\sigma $ -prime rings, Advances in Algebra, 1 (1) (2008), pp. 19–26.

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.