Commutativity of *-prime rings with generalized derivations

Mohammad Ashraf; Almas Khan

Rendiconti del Seminario Matematico della Università di Padova (2011)

  • Volume: 125, page 71-80
  • ISSN: 0041-8994

How to cite

top

Ashraf, Mohammad, and Khan, Almas. "Commutativity of *-prime rings with generalized derivations." Rendiconti del Seminario Matematico della Università di Padova 125 (2011): 71-80. <http://eudml.org/doc/239315>.

@article{Ashraf2011,
author = {Ashraf, Mohammad, Khan, Almas},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {rings with involution; -prime rings; -Lie ideals; generalized derivations; commutativity theorems},
language = {eng},
pages = {71-80},
publisher = {Seminario Matematico of the University of Padua},
title = {Commutativity of *-prime rings with generalized derivations},
url = {http://eudml.org/doc/239315},
volume = {125},
year = {2011},
}

TY - JOUR
AU - Ashraf, Mohammad
AU - Khan, Almas
TI - Commutativity of *-prime rings with generalized derivations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 125
SP - 71
EP - 80
LA - eng
KW - rings with involution; -prime rings; -Lie ideals; generalized derivations; commutativity theorems
UR - http://eudml.org/doc/239315
ER -

References

top
  1. [1] M. Ashraf - A. Ali - S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math., 32 (2) (2007), pp. 415–421. Zbl1141.16020MR2327138
  2. [2] M. Ashraf - N. Rehman, On commutativity of rings with derivations, Results Math., 42 (2002), pp. 3–8. Zbl1038.16021MR1934218
  3. [3] J. Bergen - I. N. Herstein - J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), pp. 259–267. Zbl0463.16023MR627439
  4. [4] H. E. Bell, Some commutativity results involving derivations, Trends in Theory of Rings and Modules, S. T. Rizvi and S. M. A. Zaidi (Eds.), Anamaya Publishers, New Delhi, India (2005), pp. 11–16. 
  5. [5] Bresšar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33 (1991), pp. 89–93. Zbl0731.47037MR1089958
  6. [6] P. H. Lee - T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica, 11 (1) (1983), pp. 75–80. Zbl0515.16018MR718903
  7. [7] I. N. Herstein, Topics in ring theory, Univ. Chicago Press, Chicago (1969). Zbl0232.16001MR271135
  8. [8] L. Oukhtite - S. Salhi, On generalized Derivations of σ -prime rings, African Diaspora J. Math., 5 (1) (2006), pp. 19–23. Zbl1132.16028MR2337187
  9. [9] L. Oukhtite - S. Salhi, Commutativity of σ -prime rings, Glasnik Math., 41 (2006), pp. 57–64. Zbl1123.16023MR2242391
  10. [10] L. Oukhtite - S. Salhi, Lie ideals and derivations of σ - prime rings, Int. J. Algebra, 1 (2007), pp. 25–30. Zbl1126.16019MR2327641
  11. [11] L. Oukhtite - S. Salhi, Centralizing automorphisms and Jordan left derivations of σ -prime rings, Advances in Algebra, 1 (1) (2008), pp. 19–26. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.