Commutativity of *-prime rings with generalized derivations

Mohammad Ashraf; Almas Khan

Rendiconti del Seminario Matematico della Università di Padova (2011)

  • Volume: 125, page 71-80
  • ISSN: 0041-8994

How to cite

top

Ashraf, Mohammad, and Khan, Almas. "Commutativity of *-prime rings with generalized derivations." Rendiconti del Seminario Matematico della Università di Padova 125 (2011): 71-80. <http://eudml.org/doc/239315>.

@article{Ashraf2011,
author = {Ashraf, Mohammad, Khan, Almas},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {rings with involution; -prime rings; -Lie ideals; generalized derivations; commutativity theorems},
language = {eng},
pages = {71-80},
publisher = {Seminario Matematico of the University of Padua},
title = {Commutativity of *-prime rings with generalized derivations},
url = {http://eudml.org/doc/239315},
volume = {125},
year = {2011},
}

TY - JOUR
AU - Ashraf, Mohammad
AU - Khan, Almas
TI - Commutativity of *-prime rings with generalized derivations
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 125
SP - 71
EP - 80
LA - eng
KW - rings with involution; -prime rings; -Lie ideals; generalized derivations; commutativity theorems
UR - http://eudml.org/doc/239315
ER -

References

top
  1. [1] M. Ashraf - A. Ali - S. Ali, Some commutativity theorems for rings with generalized derivations, Southeast Asian Bull. Math., 32 (2) (2007), pp. 415–421. Zbl1141.16020MR2327138
  2. [2] M. Ashraf - N. Rehman, On commutativity of rings with derivations, Results Math., 42 (2002), pp. 3–8. Zbl1038.16021MR1934218
  3. [3] J. Bergen - I. N. Herstein - J. W. Kerr, Lie ideals and derivations of prime rings, J. Algebra, 71 (1981), pp. 259–267. Zbl0463.16023MR627439
  4. [4] H. E. Bell, Some commutativity results involving derivations, Trends in Theory of Rings and Modules, S. T. Rizvi and S. M. A. Zaidi (Eds.), Anamaya Publishers, New Delhi, India (2005), pp. 11–16. 
  5. [5] Bresšar, On the distance of the composition of two derivations to the generalized derivations, Glasgow Math. J., 33 (1991), pp. 89–93. Zbl0731.47037MR1089958
  6. [6] P. H. Lee - T. K. Lee, Lie ideals of prime rings with derivations, Bull. Inst. Math. Acad. Sinica, 11 (1) (1983), pp. 75–80. Zbl0515.16018MR718903
  7. [7] I. N. Herstein, Topics in ring theory, Univ. Chicago Press, Chicago (1969). Zbl0232.16001MR271135
  8. [8] L. Oukhtite - S. Salhi, On generalized Derivations of -prime rings, African Diaspora J. Math., 5 (1) (2006), pp. 19–23. Zbl1132.16028MR2337187
  9. [9] L. Oukhtite - S. Salhi, Commutativity of -prime rings, Glasnik Math., 41 (2006), pp. 57–64. Zbl1123.16023MR2242391
  10. [10] L. Oukhtite - S. Salhi, Lie ideals and derivations of prime rings, Int. J. Algebra, 1 (2007), pp. 25–30. Zbl1126.16019MR2327641
  11. [11] L. Oukhtite - S. Salhi, Centralizing automorphisms and Jordan left derivations of -prime rings, Advances in Algebra, 1 (1) (2008), pp. 19–26. 

NotesEmbed ?

top

You must be logged in to post comments.