Long-range self-avoiding walk converges to α-stable processes
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 1, page 20-42
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topHeydenreich, Markus. "Long-range self-avoiding walk converges to α-stable processes." Annales de l'I.H.P. Probabilités et statistiques 47.1 (2011): 20-42. <http://eudml.org/doc/239654>.
@article{Heydenreich2011,
abstract = {We consider a long-range version of self-avoiding walk in dimension d > 2(α ∧ 2), where d denotes dimension and α the power-law decay exponent of the coupling function. Under appropriate scaling we prove convergence to brownian motion for α ≥ 2, and to α-stable Lévy motion for α < 2. This complements results by Slade [J. Phys. A21 (1988) L417–L420], who proves convergence to brownian motion for nearest-neighbor self-avoiding walk in high dimension.},
author = {Heydenreich, Markus},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {self-avoiding walk; Lace expansion; α-stable processes; mean-field behavior; lace expansion; -stable processes},
language = {eng},
number = {1},
pages = {20-42},
publisher = {Gauthier-Villars},
title = {Long-range self-avoiding walk converges to α-stable processes},
url = {http://eudml.org/doc/239654},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Heydenreich, Markus
TI - Long-range self-avoiding walk converges to α-stable processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 1
SP - 20
EP - 42
AB - We consider a long-range version of self-avoiding walk in dimension d > 2(α ∧ 2), where d denotes dimension and α the power-law decay exponent of the coupling function. Under appropriate scaling we prove convergence to brownian motion for α ≥ 2, and to α-stable Lévy motion for α < 2. This complements results by Slade [J. Phys. A21 (1988) L417–L420], who proves convergence to brownian motion for nearest-neighbor self-avoiding walk in high dimension.
LA - eng
KW - self-avoiding walk; Lace expansion; α-stable processes; mean-field behavior; lace expansion; -stable processes
UR - http://eudml.org/doc/239654
ER -
References
top- [1] P. Billingsley. Convergence of Probability Measures. Wiley, New York, 1968. Zbl0944.60003MR233396
- [2] D. C. Brydges and T. Spencer. Self-avoiding walk in 5 or more dimensions. Comm. Math. Phys. 97 (1985) 125–148. Zbl0575.60099MR782962
- [3] L.-C. Chen and A. Sakai. Asymptotic behavior of the gyration radius for long-range self-avoiding walk and long-range oriented percolation. Ann. Probab. To appear. Zbl1228.60108MR2789505
- [4] L.-C. Chen and A. Sakai. Critical behavior and the limit distribution for long-range oriented percolation. I. Probab. Theory Related Fields 142 (2008) 151–188. Zbl1149.60065MR2413269
- [5] L.-C. Chen and A. Sakai. Critical behavior and the limit distribution for long-range oriented percolation. II: Spatial correlation. Probab. Theory Related Fields 145 (2009) 435–458. Zbl1176.60082MR2529436
- [6] Y. Cheng. Long range self-avoiding random walks above critical dimension. Ph.D. thesis, Temple University, August 2000.
- [7] E. Derbez and G. Slade. The scaling limit of lattice trees in high dimensions. Comm. Math. Phys. 193 (1998) 69–104. Zbl0915.60076MR1620301
- [8] T. Hara and G. Slade. Self-avoiding walk in five or more dimensions. I. The critical behaviour. Comm. Math. Phys. 147 (1992) 101–136. Zbl0755.60053MR1171762
- [9] M. Heydenreich, R. van der Hofstad and A. Sakai. Mean-field behavior for long- and finite range Ising model, percolation and self-avoiding walk. J. Stat. Phys. 132 (2008) 1001–1049. Zbl1152.82007MR2430773
- [10] R. van der Hofstad. Spread-out oriented percolation and related models above the upper critical dimension: Induction and superprocesses. In Ensaios Matemáticos [Mathematical Surveys] 9 91–181. Sociedade Brasileira de Matemática, Rio de Janeiro, 2005. Zbl1077.60075MR2209700
- [11] R. van der Hofstad and G. Slade. A generalised inductive approach to the lace expansion. Probab. Theory Related Fields 122 (2002) 389–430. Zbl1002.60095MR1892852
- [12] O. Kallenberg. Foundations of Modern Probability. Springer, New York, 1997. Zbl0996.60001MR1464694
- [13] L. B. Koralov and Ya. G. Sinai. Theory of Probability and Random Processes, 2nd edition. Springer, Berlin, 2007. Zbl1181.60004MR2343262
- [14] N. Madras and G. Slade. The Self-Avoiding Walk. Birkhäuser, Boston, MA, 1993. Zbl0872.60076MR1197356
- [15] G. Samorodnitsky and M. S. Taqqu. Stable Non-Gaussian Random Processes. Chapman & Hall, New York, 1994. Zbl0925.60027MR1280932
- [16] G. Slade. Convergence of self-avoiding random walk to Brownian motion in high dimensions. J. Phys. A 21 (1988) L417–L420. Zbl0653.60061MR951038
- [17] G. Slade. The scaling limit of self-avoiding random walk in high dimensions. Ann. Probab. 17 (1989) 91–107. Zbl0664.60069MR972773
- [18] G. Slade. The Lace Expansion and Its Applications. Lecture Notes in Mathematics 1879. Springer, Berlin, 2006. Zbl1113.60005MR2239599
- [19] W.-S. Yang and D. Klein. A note on the critical dimension for weakly self-avoiding walks. Probab. Theory Related Fields 79 (1988) 99–114. Zbl0631.60076MR952997
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.