The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Long-range self-avoiding walk converges to α-stable processes”

Limit laws of transient excited random walks on integers

Elena Kosygina, Thomas Mountford (2011)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider excited random walks (ERWs) on ℤ with a bounded number of i.i.d. cookies per site without the non-negativity assumption on the drifts induced by the cookies. Kosygina and Zerner [15] have shown that when the total expected drift per site, , is larger than 1 then ERW is transient to the right and, moreover, for >4 under the averaged measure it obeys the Central Limit Theorem. We show that when ∈(2, 4] the limiting behavior of an appropriately centered and scaled excited...

Large scale behavior of semiflexible heteropolymers

Francesco Caravenna, Giambattista Giacomin, Massimiliano Gubinelli (2010)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We consider a general discrete model for heterogeneous semiflexible polymer chains. Both the thermal noise and the inhomogeneous character of the chain (the ) are modeled in terms of random rotations. We focus on the regime, i.e., the analysis is performed for a given realization of the disorder. Semiflexible models differ substantially from random walks on short scales, but on large scales a brownian behavior emerges. By exploiting techniques from tensor analysis and non-commutative...

Shape transition under excess self-intersections for transient random walk

Amine Asselah (2010)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

We reveal a shape transition for a transient simple random walk forced to realize an excess -norm of the local times, as the parameter crosses the value ()=/(−2). Also, as an application of our approach, we establish a central limit theorem for the -norm of the local times in dimension 4 or more.

Central and non-central limit theorems for weighted power variations of fractional brownian motion

Ivan Nourdin, David Nualart, Ciprian A. Tudor (2010)

Annales de l'I.H.P. Probabilités et statistiques

Similarity:

In this paper, we prove some central and non-central limit theorems for renormalized weighted power variations of order ≥2 of the fractional brownian motion with Hurst parameter ∈(0, 1), where is an integer. The central limit holds for 1/2<≤1−1/2, the limit being a conditionally gaussian distribution. If <1/2 we show the convergence in 2 to a limit which only depends on the fractional brownian motion, and if >1−1/2 we show the convergence in 2 to a stochastic integral...