Right Utumi p.p.-rings

Ulrich Albrecht

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 124, page 25-42
  • ISSN: 0041-8994

How to cite

top

Albrecht, Ulrich. "Right Utumi p.p.-rings." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 25-42. <http://eudml.org/doc/239715>.

@article{Albrecht2010,
author = {Albrecht, Ulrich},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Utumi rings; divisible modules; right annihilators; right Utumi p.p.-rings; modules over integral domains; semi-prime Goldie rings},
language = {eng},
pages = {25-42},
publisher = {Seminario Matematico of the University of Padua},
title = {Right Utumi p.p.-rings},
url = {http://eudml.org/doc/239715},
volume = {124},
year = {2010},
}

TY - JOUR
AU - Albrecht, Ulrich
TI - Right Utumi p.p.-rings
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 25
EP - 42
LA - eng
KW - Utumi rings; divisible modules; right annihilators; right Utumi p.p.-rings; modules over integral domains; semi-prime Goldie rings
UR - http://eudml.org/doc/239715
ER -

References

top
  1. [1] U. Albrecht, Two-sided submodules of Q r , Houston Journal of Mathematics, 33 (1), pp. 103--123. Zbl1124.16022MR2287846
  2. [2] U. Albrecht, Finitely Presented Modules over Right Non-Singular Rings; Rend. Sem. Math. Padova, 120 (2008), pp. 45--58. Zbl1230.16005MR2492649
  3. [3] U. Albrecht - A. Facchini, Mittag-Leffler modules over non-singular rings; Rend. Sem. Mat. Univ. Padova, 95 (1996), pp. 175--188. Zbl0865.16004MR1405362
  4. [4] U. Albrecht - J. Dauns - L. Fuchs, Torsion-freeness and non-singularity over right p.p.-rings; Journal of Algebra, 285 (2005), pp. 98--119. Zbl1088.16017MR2119106
  5. [5] U. Albrecht - J. Trilifaj, Cotilting classes of torsion-free modules J. Alg and Appl., 5 (6) (2006), pp. 747--764. Zbl1118.16021MR2286720
  6. [6] A. W. Chatters - C. R. Hajarnavis, Rings with Chain Conditions; Pitman Advanced Publishing 44; Boston, London, Melbourne (1980). Zbl0446.16001MR590045
  7. [7] L. Fuchs - L. Salce, Modules over Non-Noetherian Domains; Mathematical Surveys and Monographs 84; Amer. Math. Soc. (2000). Zbl0973.13001MR1794715
  8. [8] K. Goodearl, Ring Theory; Marcel Dekker; New York, Basel (1976). Zbl0336.16001MR429962
  9. [9] A. Hattori, A foundation of torsion theory for modules over general rings; Nagoya Math. J., 17 (1960), pp. 147--158. Zbl0117.02202MR137745
  10. [10] E. Matlis, Divisible modules; Proc. Amer. Math. Soc., 11 (1960), pp. 385--391. Zbl0095.02403MR116044
  11. [11] J. Rotman, An Introduction to Homological Algebra; Academic Press, London (1979). Zbl0165.33401MR538169
  12. [12] B. Stenström, Rings of Quotients; Lecture Notes in Math., 217; Springer Verlag, Berlin, Heidelberg, New York (1975). Zbl0296.16001MR389953

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.