Finitely Presented Modules over Right Non-Singular Rings

Ulrich Albrecht

Rendiconti del Seminario Matematico della Università di Padova (2008)

  • Volume: 120, page 45-58
  • ISSN: 0041-8994

How to cite

top

Albrecht, Ulrich. "Finitely Presented Modules over Right Non-Singular Rings." Rendiconti del Seminario Matematico della Università di Padova 120 (2008): 45-58. <http://eudml.org/doc/108746>.

@article{Albrecht2008,
author = {Albrecht, Ulrich},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {non-singular modules; right non-singular rings; maximal rings of quotients; pure-projective modules; Goldie dimension; direct summands; direct sums of finitely generated submodules; right hereditary rings},
language = {eng},
pages = {45-58},
publisher = {Seminario Matematico of the University of Padua},
title = {Finitely Presented Modules over Right Non-Singular Rings},
url = {http://eudml.org/doc/108746},
volume = {120},
year = {2008},
}

TY - JOUR
AU - Albrecht, Ulrich
TI - Finitely Presented Modules over Right Non-Singular Rings
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2008
PB - Seminario Matematico of the University of Padua
VL - 120
SP - 45
EP - 58
LA - eng
KW - non-singular modules; right non-singular rings; maximal rings of quotients; pure-projective modules; Goldie dimension; direct summands; direct sums of finitely generated submodules; right hereditary rings
UR - http://eudml.org/doc/108746
ER -

References

top
  1. [1] F. ALBRECHT, On projective modules over a semi-hereditary ring, Proc. Amer. Math. Soc., 12 (1961), pp. 638-639. Zbl0118.04401MR126470
  2. [2] U. ALBRECHT - A. FACCHINI, Mittag-Leffler modules over non-singular rings, Rend. Sem. Mat. Univ. Padova, 95 (1996), pp. 175-188. Zbl0865.16004MR1405362
  3. [3] U. ALBRECHT - J. DAUNS - L. FUCHS, Torsion-freeness and non-singularity over right p.p.-rings; Journal of Algebra, 285 (2005), pp. 98-119. Zbl1088.16017MR2119106
  4. [4] F. ANDERSON - K. FULLER, Rings and Categories of Modules, Graduate Texts in Mathematics 13; Springer Verlag (1992). Zbl0765.16001MR1245487
  5. [5] A.W. CHATTERS - C.R. HAJARNAVIS, Rings with Chain Conditions, Pitman Advanced Publishing 44; Boston, London, Melbourne (1980). Zbl0446.16001MR590045
  6. [6] J. DAUNS - L. FUCHS, Torsion-freeness in rings with zero divisors, to appear. Zbl1107.16003
  7. [7] L. FUCHS - L. SALCE, Modules over Non-Noetherian Domains, Mathematical Surveys and Monographs 84, Amer. Math. Soc. (2000). Zbl0973.13001MR1794715
  8. [8] K. GOODEARL, Ring Theory, Marcel Dekker, New York, Basel (1976). Zbl0336.16001MR429962
  9. [9] A. HATTORI, A foundation of torsion theory for modules over general rings, Nagoya Math. J., 17 (1960), pp. 147-158. Zbl0117.02202MR137745
  10. [10] J. ROTMAN, An Introduction to Homological Algebra; Academic Press, London (1979). Zbl0441.18018MR538169
  11. [11] B. STENSTRÖM, Rings of Quotients, Lecture Notes in Math. 217, Springer Verlag, Berlin, Heidelberg, New York (1975). Zbl0296.16001MR389953

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.