GIT quotients of products of projective planes
Rendiconti del Seminario Matematico della Università di Padova (2010)
- Volume: 123, page 1-36
- ISSN: 0041-8994
Access Full Article
topHow to cite
topIncensi, Francesca. "GIT quotients of products of projective planes." Rendiconti del Seminario Matematico della Università di Padova 123 (2010): 1-36. <http://eudml.org/doc/239768>.
@article{Incensi2010,
author = {Incensi, Francesca},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {geometric invariant theory; projective planes; semistable points},
language = {eng},
pages = {1-36},
publisher = {Seminario Matematico of the University of Padua},
title = {GIT quotients of products of projective planes},
url = {http://eudml.org/doc/239768},
volume = {123},
year = {2010},
}
TY - JOUR
AU - Incensi, Francesca
TI - GIT quotients of products of projective planes
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 123
SP - 1
EP - 36
LA - eng
KW - geometric invariant theory; projective planes; semistable points
UR - http://eudml.org/doc/239768
ER -
References
top- [1] D. Cox, The homogeneous coordinate ring of a toric variety, J. Alg. Geom., 4 (1995), pp. 17--50. Zbl0846.14032MR1299003
- [2] D. Cox, Toric variety and Toric resolutions, Resolution of Singularities (H. Hauser, J. Lipman, F. Oort, A. Quiros, eds), Birkhäuser (Basel-Boston-Berlin, 2000), pp. 259--284. Zbl0969.14035MR1748623
- [3] I. V. Dolgachev, Lectures on Invariant Theory, Cambridge University Press, Lecture Note Series 296, 2003. Zbl1023.13006MR2004511
- [4] I. V. Dolgachev - Y. Hu, Variations of geometric invariant theory quotients, Publ. Math. IHES, 87 (1998), pp. 5--51. Zbl1001.14018MR1659282
- [5] J. M. Drézet, Luna's Slice Theorem, Notes for a course in Algebraic group actions and quotients at Wykno (Poland, Sept. 3-10, 2000).
- [6] W. Fulton, Introduction to Toric Varieties, Princeton Univ. Press, 1993. Zbl0813.14039MR1234037
- [7] R. Hartshorne, Algebraic Geometry, Springer-Verlag, GTM 52 (1977). Zbl0367.14001MR463157
- [8] F. Incensi, Quozienti GIT di prodotti di spazi proiettivi, PhD Thesis (2006).
- [9] D. Luna, Slices Ètales, Mém. Bull. Soc. Math de France, 33 (1973), pp. 81--105. Zbl0286.14014MR342523
- [10] D. Mumford - J. Fogarty - F. Kirwan, Geometric Invariant Theory, Springer-Verlag, 1994. Zbl0797.14004MR1304906
- [11] M. Thaddeus, Geometric invariant theory and flips, Jour. Amer. Math. Soc., 9 (1996), pp. 691--723. Zbl0874.14042MR1333296
- [12] C. Walter, Variation of quotients and étale slices in geometric invariant theory, Notes for a course in Algebra and Geometry at Dyrkolbotn, Norway (Dec. 4-9, 1995).
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.