GIT quotients of products of projective planes

Francesca Incensi

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 123, page 1-36
  • ISSN: 0041-8994

How to cite

top

Incensi, Francesca. "GIT quotients of products of projective planes." Rendiconti del Seminario Matematico della Università di Padova 123 (2010): 1-36. <http://eudml.org/doc/239768>.

@article{Incensi2010,
author = {Incensi, Francesca},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {geometric invariant theory; projective planes; semistable points},
language = {eng},
pages = {1-36},
publisher = {Seminario Matematico of the University of Padua},
title = {GIT quotients of products of projective planes},
url = {http://eudml.org/doc/239768},
volume = {123},
year = {2010},
}

TY - JOUR
AU - Incensi, Francesca
TI - GIT quotients of products of projective planes
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 123
SP - 1
EP - 36
LA - eng
KW - geometric invariant theory; projective planes; semistable points
UR - http://eudml.org/doc/239768
ER -

References

top
  1. [1] D. Cox, The homogeneous coordinate ring of a toric variety, J. Alg. Geom., 4 (1995), pp. 17--50. Zbl0846.14032MR1299003
  2. [2] D. Cox, Toric variety and Toric resolutions, Resolution of Singularities (H. Hauser, J. Lipman, F. Oort, A. Quiros, eds), Birkhäuser (Basel-Boston-Berlin, 2000), pp. 259--284. Zbl0969.14035MR1748623
  3. [3] I. V. Dolgachev, Lectures on Invariant Theory, Cambridge University Press, Lecture Note Series 296, 2003. Zbl1023.13006MR2004511
  4. [4] I. V. Dolgachev - Y. Hu, Variations of geometric invariant theory quotients, Publ. Math. IHES, 87 (1998), pp. 5--51. Zbl1001.14018MR1659282
  5. [5] J. M. Drézet, Luna's Slice Theorem, Notes for a course in Algebraic group actions and quotients at Wykno (Poland, Sept. 3-10, 2000). 
  6. [6] W. Fulton, Introduction to Toric Varieties, Princeton Univ. Press, 1993. Zbl0813.14039MR1234037
  7. [7] R. Hartshorne, Algebraic Geometry, Springer-Verlag, GTM 52 (1977). Zbl0367.14001MR463157
  8. [8] F. Incensi, Quozienti GIT di prodotti di spazi proiettivi, PhD Thesis (2006). 
  9. [9] D. Luna, Slices Ètales, Mém. Bull. Soc. Math de France, 33 (1973), pp. 81--105. Zbl0286.14014MR342523
  10. [10] D. Mumford - J. Fogarty - F. Kirwan, Geometric Invariant Theory, Springer-Verlag, 1994. Zbl0797.14004MR1304906
  11. [11] M. Thaddeus, Geometric invariant theory and flips, Jour. Amer. Math. Soc., 9 (1996), pp. 691--723. Zbl0874.14042MR1333296
  12. [12] C. Walter, Variation of quotients and étale slices in geometric invariant theory, Notes for a course in Algebra and Geometry at Dyrkolbotn, Norway (Dec. 4-9, 1995). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.