Lipschitzian norm estimate of one-dimensional Poisson equations and applications
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 2, page 450-465
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topDjellout, Hacene, and Wu, Liming. "Lipschitzian norm estimate of one-dimensional Poisson equations and applications." Annales de l'I.H.P. Probabilités et statistiques 47.2 (2011): 450-465. <http://eudml.org/doc/239783>.
@article{Djellout2011,
abstract = {By direct calculus we identify explicitly the lipschitzian norm of the solution of the Poisson equation in terms of various norms of g, where is a Sturm–Liouville operator or generator of a non-singular diffusion in an interval. This allows us to obtain the best constant in the L1-Poincaré inequality (a little stronger than the Cheeger isoperimetric inequality) and some sharp transportation–information inequalities and concentration inequalities for empirical means. We conclude with several illustrative examples.},
author = {Djellout, Hacene, Wu, Liming},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {Poisson equations; transportation–information inequalities; concentration and isoperimetric inequalities; transportation-information inequalities},
language = {eng},
number = {2},
pages = {450-465},
publisher = {Gauthier-Villars},
title = {Lipschitzian norm estimate of one-dimensional Poisson equations and applications},
url = {http://eudml.org/doc/239783},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Djellout, Hacene
AU - Wu, Liming
TI - Lipschitzian norm estimate of one-dimensional Poisson equations and applications
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 2
SP - 450
EP - 465
AB - By direct calculus we identify explicitly the lipschitzian norm of the solution of the Poisson equation in terms of various norms of g, where is a Sturm–Liouville operator or generator of a non-singular diffusion in an interval. This allows us to obtain the best constant in the L1-Poincaré inequality (a little stronger than the Cheeger isoperimetric inequality) and some sharp transportation–information inequalities and concentration inequalities for empirical means. We conclude with several illustrative examples.
LA - eng
KW - Poisson equations; transportation–information inequalities; concentration and isoperimetric inequalities; transportation-information inequalities
UR - http://eudml.org/doc/239783
ER -
References
top- [1] F. Barthe and A. V. Kolesnikov. Mass transport and variants of the logarithmic Sobolev inequality. J. Geom. Anal. 18 (2008) 921–979. Zbl1170.46031MR2438906
- [2] F. Barthe and C. Roberto. Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481–497. Zbl1072.60008MR2052235
- [3] S. G. Bobkov and F. Götze. Exponential integrability and transportation cost related to logarithmic Sobolev inequalities. J. Funct. Anal. 163 (1999) 1–28. Zbl0924.46027MR1682772
- [4] S. G. Bobkov and C. Houdre. Some connections between isoperimetric and Sobolev-type inequalities. Mem. Amer. Math. Soc. 129 (1997) No. 616. Zbl0886.49033MR1396954
- [5] S. G. Bobkov and C. Houdre. Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997) 184–205. Zbl0878.60013MR1428505
- [6] S. G. Bobkov and M. Ledoux. Weighted Poincaré-type inequalities for Cauchy and other convex measures. Ann. Probab. 37 (2009) 403–427. Zbl1178.46041MR2510011
- [7] P. Buser. A note on the isoperimetric constant. Ann. Sci. École Norm. Sup. 15 (1982) 213–230. Zbl0501.53030MR683635
- [8] M. F. Chen. Analytic proof of dual variational formula for the first eigenvalue in dimension one. Sci. China Ser. A 42 (1999) 805–815. Zbl0936.35120MR1738551
- [9] M. F. Chen. Eigenvalues, Inequalities, and Ergodic Theory. Springer, London, 2005. Zbl1079.60005MR2105651
- [10] N. Demni and M. Zani. Large deviations for statistics of the Jacobi process. Stochastic Process. Appl. 119 (2009) 518–533. Zbl1158.60008MR2494002
- [11] H. Djellout. Lp-uniqueness for one-dimensional diffusions. In Mémoire de D.E.A. Université Blaise Pascal, Clermont-Ferrand, 1997.
- [12] A. Eberle. Uniqueness and Non-Uniqueness of Semigroups Generated by Singular Diffusion Operators. Lecture Notes in Mathematics 1718. Springer, Berlin, 1999. Zbl0957.60002MR1734956
- [13] N. Gozlan, Poincaré inequalities and dimension free concentration of measure. Ann. Inst. H. Poincaré Probab. Statist. To appear. Zbl1205.60040MR2682264
- [14] N. Gozlan and C. Léonard. A large deviation approach to some transportation cost inequalities. Probab. Theory Related Fields 139 (2007) 235–283. Zbl1126.60022MR2322697
- [15] A. Guillin, C. Léonard, L. Wu and N. Yao. Transport–information inequalities for Markov processes (I). Probab. Theory Related Fields 144 (2009) 669–695. Zbl1169.60304MR2496446
- [16] A. Guillin, C. Léonard, F. Y. Wang and L. Wu. Transportation–information inequalities for Markov processes (II): Relations with other functional inequalities. Preprint. Available at http://arxiv.org/abs/0902.2101 or http://hal.archives-ouvertes.fr/hal-00360854/fr/. Zbl1169.60304
- [17] N. Ikeda and S. Watanabe. Stochastic Differential Equations and Diffusion Processes, 2nd edition. North-Holland Mathematical Library 24. North-Holland, Amsterdam, 1989. Zbl0684.60040MR1011252
- [18] T. Klein, Y. Ma and N. Privault. Convex concentration inequality and forward/backward martingale stochastic calculus. Electron. J. Probab. 11 (2006) 486–512. Zbl1112.60034MR2242653
- [19] O. Ludger. Estimation for continuous branching processes. Scand. J. Statist. 25 (1998) 111–126. Zbl0905.62083MR1614256
- [20] M. Ledoux. The Concentration of Measure Phenomenon. Mathematical Surveys and Monographs 89. Amer. Math. Soc., Providence, RI, 2001. Zbl0995.60002MR1849347
- [21] M. Ledoux. Spectral gap, logarithmic Sobolev constant, and geometric bounds. Surv. Differ. Geom. IX (2004) 219–240. Zbl1061.58028MR2195409
- [22] E. Milman. On the role of convexity in isoperimetry, spectral gap and concentration. Invent. Math. 177 (2009) 1–43. Zbl1181.52008MR2507637
- [23] F. Otto and C. Villani. Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173 (2000) 361–400. Zbl0985.58019MR1760620
- [24] F. Y. Wang. Functional Inequalities, Markov Semigroup and Spectral Theory. Chinese Sciences Press, Beijing, 2005.
- [25] L. M. Wu. Moderate deviations of dependent random variables related to CLT. Ann. Probab. 23 (1995) 420–445. Zbl0828.60017MR1330777
- [26] L. Wu, Gradient estimates of Poisson equations on Riemannian manifolds and applications. J. Funct. Anal. 29 (2009) 1008–1022. Zbl1184.65101MR2557733
- [27] L. Wu and Y. P. Zhang. A new topological approach to the L∞-uniqueness of operators and the L1-uniqueness of Fokker–Planck equations. J. Funct. Anal. 241 (2006) 557–610. Zbl1111.47035MR2271930
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.