A note on the isoperimetric constant

Peter Buser

Annales scientifiques de l'École Normale Supérieure (1982)

  • Volume: 15, Issue: 2, page 213-230
  • ISSN: 0012-9593

How to cite


Buser, Peter. "A note on the isoperimetric constant." Annales scientifiques de l'École Normale Supérieure 15.2 (1982): 213-230. <http://eudml.org/doc/82095>.

author = {Buser, Peter},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {first eigenvalue of the Laplacian; isoperimetric constant},
language = {eng},
number = {2},
pages = {213-230},
publisher = {Elsevier},
title = {A note on the isoperimetric constant},
url = {http://eudml.org/doc/82095},
volume = {15},
year = {1982},

AU - Buser, Peter
TI - A note on the isoperimetric constant
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1982
PB - Elsevier
VL - 15
IS - 2
SP - 213
EP - 230
LA - eng
KW - first eigenvalue of the Laplacian; isoperimetric constant
UR - http://eudml.org/doc/82095
ER -


  1. [1] F. ALMGREN, Existence and Regularity Almost Everywhere of Solutions to Elliptic Variational Problems with Constraints (Mem. Amer. Math. Soc., Vol. 4, No. 165, 1976). Zbl0327.49043MR54 #8420
  2. [2] M. BERGER, Une inégalité universelle pour la première valeur propre du laplacien (Bull. Soc. Math. Fr., Vol. 107, 1979, pp. 3-9). Zbl0399.35080MR80f:58046
  3. [3] M. BERGER, Une borne inférieure pour le volume d'une variété riemannienne en fonction du rayon d'injectivité (Ann. Inst. Fourier, Grenoble, Vol. 30, 1980, pp. 259-265). Zbl0421.53028MR82b:53047
  4. [4] L. BISHOP and R. CRITTENDEN, Geometry of Manifolds, Academic Press, New York, London, 1964. Zbl0132.16003
  5. [5] R. BROOKS, Amenability and the Spectrum of the Laplacian, Maryland, April 1981 (Preprint). Zbl0495.58029
  6. [6] P. BUSER, Ueber den ersten Eigenwert des Laplace-Operators auf kompakten Flächen (Comment. Math. Helv., Vol. 54, 1979, pp. 477-493). Zbl0433.58020MR81g:58038
  7. [7] P. BUSER, Beispiele für λ1 auf kompakten Mannigfaltigkeiten Math. Z., Vol. 165, 1977, pp. 107-133. Zbl0377.35058MR80d:58070
  8. [8] P. BUSER, On Cheeger's Inequality λ1 ≧ h²/4, in Geometry of the Laplace Operator (Proceedings of Symposia in Pure Mathematics, Vol. 36, 1980 pp. 29-77). Zbl0432.58024MR83b:58075
  9. [9] I. CHAVEL, A Note on Manifolds with Thin Handles (Preprint). 
  10. [10] J. CHEEGER, A Lower Bound for the Smallest Eigenvalue of the Laplacian, in Problems in Analysis (A Symposium in Honor of S. Bochner, Princeton University Press, 1970, pp. 195-199). Zbl0212.44903MR53 #6645
  11. [11] B. CROKE, Some Isoperimetric Inequalities and Eigenvalue Estimates (Ann. Scient. Éc. Norm. Sup. 4e série, T. 13, 1980, pp. 419-435). Zbl0465.53032MR83d:58068
  12. [12] H. DONNELLY, On the Essential Spectrum of a Complete Riemannian Manifold (Topology, Vol. 20, 1980, pp. 1-14). Zbl0463.53027MR81j:58081
  13. [13] H. FEDERER, Geometric Measure Theory, Springer Verlag, New York, etc., 1969. Zbl0176.00801MR41 #1976
  14. [14] H. FEDERER, The Singular Sets of Area Minimizing Rectifiable Currents with Codimension One and of Area Minimizing Flat Chains Modulo two with Arbitrary Codimension (Bull. Amer. Math. Soc., Vol. 76, 1970, pp. 767-771). Zbl0194.35803MR41 #5601
  15. [15] M. GAGE, Upper Bounds for the First Eigenvalue of the Laplace-Beltrami Operator (Indiana Univ. Math. J., Vol. 29, 1980, pp. 897-912. Zbl0465.53031MR82b:58095
  16. [16] M. GROMOV, Paul Levy's Isoperimetric Inequality (Preprint). 
  17. [17] E. HEINTZE and H. KARCHER, A General Comparison Theorem with Applications to Volume Estimates for Submanifolds (Ann. Scient. Éc. Norm. Sup., 4e série, T. 11, 1978, pp. 451-470). Zbl0416.53027MR80i:53026
  18. [18] P. LI, On the Sobolev Constant and the p-Spectrum of a Compact Riemannian Manifold (Ann. Scient. Ec. Norm. Sup., 4e série, T. 13, 1980, pp. 451-467). Zbl0466.53023MR82h:58054
  19. [19] U. MASSARI, Esistenza e Regolarità delle Ipersuperfici di Curvatura Media Assegnata in ℝn (Arch. Rat. Mech. Anal., Vol. 55, 1974, pp. 357-382). Zbl0305.49047MR50 #8240
  20. [20] S. MINAKSHISUNDARAM and Å. PLEJEL, Some Properties of the Eigenfunctions of the Laplace-Operator on Riemannian Manifolds (Canad. J. Math., Vol. 1, 1949, pp. 242-256). Zbl0041.42701MR11,108b
  21. [21] R. OSSERMAN, A Note on Hayman's Theorem on the Bass Note of a Drum (Comment. Math. Helv. Vol. 52, 1977, pp. 545-555). Zbl0374.52008MR56 #17297
  22. [22] R. OSSERMAN, The Isoperimetric Inequality (Bull. Amer. Math. Soc., Vol. 84, 1978, pp. 1182-1238). Zbl0411.52006MR58 #18161
  23. [23] R. SCHOEN, S. WOLPERT and S. T. YAU, Geometric Bounds on the Low Eigenvalues of a Compact Surface, in Geometry of the Laplace Operator (Proceedings of Symposia in Pure Mathematics, Vol. 36, 1980, pp. 279-285). Zbl0446.58018MR81i:58052
  24. [24] S. T. YAU, Isoperimetric Constants and the First Eigenvalue of a Compact Riemannian Manifold (Ann. Scient. Éc. Norm. Sup., 4e série, T. 8, 1975, pp. 487-507). Zbl0325.53039MR53 #1478

Citations in EuDML Documents

  1. Gilles Courtois, La première valeur propre non nulle du laplacien des p - formes
  2. Carlos Matheus, Gabriela Weitze-Schmithüsen, Explicit Teichmüller curves with complementary series
  3. Hacene Djellout, Liming Wu, Lipschitzian norm estimate of one-dimensional Poisson equations and applications
  4. Alexander Grigor'yan, Laurent Saloff-Coste, Stability results for Harnack inequalities
  5. Bruno Colbois, Le spectre du laplacien agissant sur les p - formes différentielles
  6. Michel Ledoux, Inégalités isopérimétriques en analyse et probabilités
  7. Donatella Danielli, Nicola Garofalo, Duy-Minh Nhieu, Trace inequalities for Carnot-Carathéodory spaces and applications

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.