Orbit measures, random matrix theory and interlaced determinantal processes
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 1, page 209-249
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topDefosseux, Manon. "Orbit measures, random matrix theory and interlaced determinantal processes." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 209-249. <http://eudml.org/doc/239800>.
@article{Defosseux2010,
abstract = {A connection between representation of compact groups and some invariant ensembles of hermitian matrices is described. We focus on two types of invariant ensembles which extend the gaussian and the Laguerre Unitary ensembles. We study them using projections and convolutions of invariant probability measures on adjoint orbits of a compact Lie group. These measures are described by semiclassical approximation involving tensor and restriction multiplicities. We show that a large class of them are determinantal.},
author = {Defosseux, Manon},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random matrix; determinantal process; interlaced configuration; Gelfand Tsetlin polytope; cristal graph; minor process; rank one perturbation; crystal graph; eigenvalue distribution; random matrix ensembles; Gaussian and Laguerre unitary ensembles; orbit measure},
language = {eng},
number = {1},
pages = {209-249},
publisher = {Gauthier-Villars},
title = {Orbit measures, random matrix theory and interlaced determinantal processes},
url = {http://eudml.org/doc/239800},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Defosseux, Manon
TI - Orbit measures, random matrix theory and interlaced determinantal processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 209
EP - 249
AB - A connection between representation of compact groups and some invariant ensembles of hermitian matrices is described. We focus on two types of invariant ensembles which extend the gaussian and the Laguerre Unitary ensembles. We study them using projections and convolutions of invariant probability measures on adjoint orbits of a compact Lie group. These measures are described by semiclassical approximation involving tensor and restriction multiplicities. We show that a large class of them are determinantal.
LA - eng
KW - random matrix; determinantal process; interlaced configuration; Gelfand Tsetlin polytope; cristal graph; minor process; rank one perturbation; crystal graph; eigenvalue distribution; random matrix ensembles; Gaussian and Laguerre unitary ensembles; orbit measure
UR - http://eudml.org/doc/239800
ER -
References
top- [1] A. Altland and M. Zirnbauer. Nonstandard symmetry classes in mesoscopic normal/superconducting hybrid structures. Phys. Rev. B 55 (1997) 1142–1161.
- [2] Y. Baryshnikov. GUEs and queues. Probab. Theory Related Fields 119 (2001) 256–274. Zbl0980.60042MR1818248
- [3] A. Berenstein and A. Zelevinsky. Tensor product multiplicities and convex polytopes in partition space. J. Geom. Phys. 5 (1988) 453–472. Zbl0712.17006MR1048510
- [4] P. Biane. Le théorème de Pitman. In le groupe quantique SUq(2) et une question de P.A. Meyer. In In Memoriam Paul-André Meyer: Séminaire de Probabilités XXXIX 61–75. Lecture Notes in Math. 1874. Springer, Berlin, 2006. Zbl1117.81082MR2276889
- [5] E. Borel. Sur les principes de la théorie cinétique des gaz. Ann. Sci. École Norm. Sup. 23 (1906) 9–32. Zbl37.0944.01MR1509063JFM37.0944.01
- [6] A. Borodin and G. Olshanski. Harmonic analysis on the infinite-dimensional unitary group and determinantal point processes. Ann. of Math. (2) 161 (2005) 1319–1422. Zbl1082.43003MR2180403
- [7] A. Borodin, P.L. Ferrari, M. Präehofer and T. Sasamoto. Fluctuation properties of the TASEP with periodic initial configuration. J. Stat. Phys. 129 (2007) 1055–1080. Zbl1136.82028MR2363389
- [8] A. Borodin. Biorthogonal ensembles. Nuclear Phys. B 536 (1999) 704–732. Zbl0948.82018MR1663328
- [9] E. Brezin, S. Hikami and A.I. Larkin. Level statistics inside the vortex of a superconductor and symplectic random-matrix theory in an external source. Phys. Rev. B 60 (1999) 3589–3602.
- [10] E. Brezin and S. Hikami. Intersection numbers from the antisymmetric Gaussian matrix model. J. High Energy Phys. (2008) 7 050, 19. Zbl1152.14300MR2430134
- [11] M.F. Bru. Wishart process. J. Theoret. Probab. 4 (1991) 725–751. Zbl0737.60067MR1132135
- [12] J. Cardy. Network models in class C on arbitrary graphs. Comm. Math. Phys. 258 (2005) 87–102. Zbl1079.81075MR2166841
- [13] M. Caselle and U. Magnea. Random matrix theory and symmetric spaces. Phys. Rep. 394 (2004) 41–156. MR2049671
- [14] H. Cohn, M. Larsen and J. Propp. The shape of a typical boxed plane partition. New York J. Math. 4 (1998) 137–165 (electronic). Zbl0908.60083MR1641839
- [15] B. Collins and P. Sniady. Representation of Lie groups and random matrices. Trans. Amer. Math. Soc. 361 (2009) 3269–3287. Zbl1170.22005MR2485426
- [16] M. Defosseux. Orbit measures and interlaced determinantal point processes. C. R. Math. Acad. Sci. Paris Ser. I 346 (2008) 783–788. Zbl1157.60027MR2427082
- [17] P. Diaconis and M. Shahshahani. Products of random matrices as they arise in the study of random walks on groups. In Random Matrices and Their Applications (Brunswick, Maine, 1984) 183–195. Contemp. Math. 50. Amer. Math. Soc., Providence, RI, 1986. Zbl0586.60012MR841092
- [18] A.H. Dooley, J. Repka and N.J. Wildberger. Sums of adjoint orbits. Linear Multilinear Algebra 36 (1993) 79–101. Zbl0797.15010MR1308911
- [19] A.K. Duli and N.D. Wildberger. Harmonic analysis and the global exponential map for compact Lie groups. Funct. Anal. Appl. 27 (1993) 25–32. Zbl0804.22011MR1225907
- [20] F.J. Dyson. The threefold way. Algebraic structure of symmetry groups and ensembles in quantum mechanics. J. Math. Phys. 3 (1962) 1199–1215. Zbl0134.45703MR177643
- [21] P. Eichelsbacher and M. Stolz. Large deviations for random matrix ensembles in mesoscopic physics. Available at arXiv:math/0610811v2. Zbl1151.60012MR2437529
- [22] J. Faraut. Infinite Dimensional Spherical Analysis. COE Lecture Note 10. Kyushu University, The 21st Century COE Program “DMHF,” Fukuoka, 2008. Zbl1154.43008MR2391335
- [23] P.J. Forrester. Log–gases and random matrices. To appear. Available at http://www.ms.unimelb.edu.au/~matpjf/matpjf.html. Zbl1217.82003MR2641363
- [24] P.J. Forrester and E. Nordenstam. The anti-symmetric GUE minor process. Available at arXiv:math-pr/0804.3293v1. Zbl1191.15032MR2663989
- [25] M. Fulmek and C. Krattenthaler. Lattice paths proofs for determinantal formulas for symplectic and orthogonal characters. J. Combin. Theory Ser. A 77 (1997) 3–50. Zbl0867.05083MR1426737
- [26] W. Fulton. Young Tableaux. London Mathematical Society Student Text 35. Cambridge Univ. Press, Cambridge, 1997. Zbl0878.14034MR1464693
- [27] I.M. Gelfand and M.L. Tsetlin. Finite dimensional representations of the group of unimodular matrices. Dokl. Akad. Nauk. USSR 71 (1981) 275–290.
- [28] F. Gillet. Asymptotic behaviour of watermelons. Preprint, 2003. Available at arXiv:math.PR/0307204.
- [29] N.R. Goodman. Statistical analysis based on a certain multivariate complex Gaussian distribution (An Introduction). Ann. Math. Statist. 34 (1963) 152–177. Zbl0122.36903MR145618
- [30] G.J. Heckman. Projections of orbits and asymptotic behaviour of multiplicities for compact connected Lie groups. Invent. Math. 67 (1982) 333–356. Zbl0497.22006MR665160
- [31] P. Heinzner, A. Huckleberry and M.R. Zirnbauer. Symmetry classes of disordered fermions. Commun. Math. Phys. 257 (2005) 725–771. Zbl1092.82020MR2164950
- [32] S. Helgason. Groups and Geometric Analysis. Academic Press, New York, 1984. Zbl0543.58001MR754767
- [33] K. Johansson. Random matrices and determinantal processes. Available at arXiv:math-ph/0510038v1. MR2581882
- [34] K. Johansson and E. Nordenstam. Eigenvalues of GUE minors. Electron. J. Probab. 11 (2006) 1342–1371. Zbl1127.60047MR2268547
- [35] M. Kashiwara. On crystal bases. In Representations of Groups. CMS Conference Proceedings 16 155–197. Amer. Math. Soc., Providence, RI, 1995. Zbl0851.17014MR1357199
- [36] M. Kashiwara and T. Nakashima. Crystal graphs for representations of the q-analogue of classical Lie algebras. J. Algebra 165 (1994) 295–345. Zbl0808.17005MR1273277
- [37] M. Katori, H. Tanemura, T. Nagao and N. Komatsuda. Vicious walk with a wall, noncolliding meanders, chiral and Bogoliubov–de Gennes random matrices. Phys. Rev. E 68 (2003) 1–16.
- [38] M. Katori and H. Tanemura. Symmetry of matrix-valued stochastic processes and noncolliding diffusion particle systems. J. Math. Phys. 45 (2004) 3058–3085. Zbl1071.82045MR2077500
- [39] A.A. Kirillov. Merits and demerits of the orbit method. Bull. Amer. Math. Soc. (N.S.) 36 (1999) 433–488. Zbl0940.22013MR1701415
- [40] A.A. Kirillov. Lectures on the Orbit Method. Graduate Studies in Mathematics 64. Amer. Math. Soc., Providence, RI, 2004. Zbl1229.22003MR2069175
- [41] A. Klyachko. Random walks on symmetric spaces and inequalities for matrix spectra. Linear Algebra Appl. 319 (2000) 37–59. Zbl0980.15015MR1799623
- [42] A.W. Knapp. Lie Groups, Beyond an Introduction, 2nd edition. Progress in Mathematics 140. Birkhäuser, Boston, 2002. Zbl1075.22501MR1920389
- [43] C. Krattenthaler, A.J. Guttmann and X.G. Viennot. Vicious walkers, friendly walkers and Young tableaux. II. With a wall. J. Phys. A 33 (2000) 8835–8866. Zbl0970.82016MR1801472
- [44] M.L. Mehta and N. Rosenzweig. Distribution laws for the roots of a random antisymmetric hermitian matrix. Nuclear Phys. A 109 (1968) 449–456.
- [45] M.L. Mehta. Random Matrices, 3rd edition. Pure and Applied Mathematics (Amsterdam) 142. Elsevier–Academic Press, Amsterdam, 2004. Zbl1107.15019MR2129906
- [46] T. Nakashima. Crystal base and a generalization of the Littlewood–Richardson rule for the classical Lie algebras. Comm. Math. Phys. 154 (1993) 215–243. Zbl0795.17016MR1224078
- [47] A. Okounkov and N. Reshetikhin. The birth of random matrix. Moscow Math. J. 6 (2006) 553–566. Zbl1130.15014MR2274865
- [48] G. Olshanski. Unitary representations of (G, K)-pairs that are connected with the infinite symmetric group S(∞). Leningrad Math. J. 1 (1990) 983–1014. Zbl0731.20009MR1027466
- [49] G. Olshanski. Unitary representation of infinite dimensional pairs (G, K) and the formalism of R. Howe. In Representation of Lie Groups and Related Topics. A.M. Vershik and D.P. Zhelobenko (Eds). Advanced Studies in Contemporary Mathematics 7. Gordon and Breach, New York, 1990. Zbl0724.22020MR1104279
- [50] G. Olshanski. The problem of harmonic analysis on the infinite-dimensional unitary group. J. Funct. Anal. 205 (2003) 464–524. Zbl1036.43002MR2018416
- [51] G. Olshanski and A. Vershik. Ergodic unitary invariant measures on the space of infinite Hermitian matrices. Amer. Math. Soc. Transl. Ser. 2 175 (1996) 137–175. Zbl0853.22016MR1402920
- [52] D. Pickrell. Mackey analysis of infinite classical motion groups. Pacific J. Math. 150 (1991) 139–166. Zbl0739.22016MR1120717
- [53] U. Porod. The cut-off phenomenon for random reflections. Ann. Probab. 24 (1996) 74–96. Zbl0854.60068MR1387627
- [54] U. Porod. The cut-off phenomenon for random reflections. II. Complex and quaternionic cases. Probab. Theory Related Fields 104 (1996) 181–209. Zbl0865.60005MR1373375
- [55] J.S. Rosenthal. Random rotations: Characters and random walks on SO(N). Ann. Probab. 22 (1994) 398–423. Zbl0799.60007MR1258882
- [56] M. Roesler. Bessel convolution on matrix cones. Compos. Math. 143 (2007) 749–779. Zbl1115.33011MR2330446
- [57] J.J.M. Verbaarschot. The spectrum of the QCD Dirac operator and chiral random matrix theory: The threefold way. Phys. Rev. Lett. 72 (1994) 2531–2533.
- [58] D. Wang. Spiked models in Wishart ensemble. PhD thesis. Available at arXiv:math-pr/0804.0889v1. MR2711517
- [59] J. Warren. Dyson’s Brownian motions, intertwining and interlacing. Electron. J. Probab. 12 (2007) 573–590. Zbl1127.60078MR2299928
- [60] E.P. Wigner. On the statistical distribution of the widths and spacings of nuclear resonance levels. Proc. Cambridge Philos. Soc. 47 (1951) 790–798. Zbl0044.44203
- [61] J. Wishart. The generalised product moment distribution in samples from a normal multivariate population. Biometrika 20A (1928) 32–52. Zbl54.0565.02JFM54.0565.02
- [62] D.P. Zhelobenko. Compact Lie Groups and Their Representations. Transl. of Math. Monographs 40. AMS, Providence, RI, 1973. Zbl0272.22006MR473098
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.