The Dyson Brownian Minor Process
Mark Adler[1]; Eric Nordenstam[2]; Pierre Van Moerbeke[3]
- [1] Brandeis University Department of Mathematics Waltham, Mass 02454 (USA)
- [2] Universität Wien Fakultät für Mathematik Oscar-Morgenstern-Platz 1 1090 Wien (Austria)
- [3] Université de Louvain Department of Mathematics 1348 Louvain-la-Neuve (Belgium) Brandeis University Waltham, Mass 02454 (USA)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 3, page 971-1009
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topReferences
top- Mark Adler, Pierre van Moerbeke, PDEs for the joint distributions of the Dyson, Airy and sine processes, Ann. Probab. 33 (2005), 1326-1361 Zbl1093.60021MR2150191
- Mark Adler, Eric Nordenstam, Pierre van Moerbeke, Dyson’s Brownian motions on the spectra of consecutive minors, Stoch. Processes and their Appl. 124 (2014), 2023-2051 Zbl1308.60013MR3188348
- Yu. Baryshnikov, GUEs and queues, Probab. Theory Related Fields 119 (2001), 256-274 Zbl0980.60042MR1818248
- Martin Bender, Global fluctuations in general Dyson’s Brownian motion, Stochastic Process. Appl. 118 (2008), 1022-1042 Zbl1139.60342MR2418256
- Alexei Borodin, Determinantal point processes, The Oxford handbook of random matrix theory, Oxford University Press, Oxford (2011), 231-249 Zbl1238.60055MR2932631
- Alexei Borodin, Patrik L. Ferrari, Large time asymptotics of growth models on space-like paths. I. PushASEP, Electron. J. Probab. 13 (2008), no. 50, 1380-1418 Zbl1187.82084MR2438811
- Alexei Borodin, Patrik L. Ferrari, Michael Prähofer, Tomohiro Sasamoto, Fluctuation properties of the TASEP with periodic initial configuration, J. Stat. Phys. 129 (2007), 1055-1080 Zbl1136.82028MR2363389
- Alexei Borodin, Patrik L. Ferrari, Michael Prähofer, Tomohiro Sasamoto, Jon Warren, Maximum of Dyson Brownian motion and non-colliding systems with a boundary, Electron. Commun. Probab. 14 (2009), 486-494 Zbl1189.60169MR2559098
- Alexei Borodin, Patrik L. Ferrari, Tomohiro Sasamoto, Two speed TASEP, J. Stat. Phys. 137 (2009), 936-977 Zbl1183.82062MR2570757
- Alexei Borodin, Eric M. Rains, Eynard-Mehta theorem, Schur process, and their Pfaffian analogs, J. Stat. Phys. 121 (2005), 291-317 Zbl1127.82017MR2185331
- Cédric Boutillier, The bead model and limit behaviors of dimer models, Ann. Probab. 37 (2009), 107-142 Zbl1171.82006MR2489161
- Manon Defosseux, Orbit measures and interlaced determinantal point processes, C. R. Acad. Sci. Paris, Series I 346 (2008), 783-788 Zbl1157.60027MR2427082
- Manon Defosseux, Orbit measures, random matrix theory and interlaced determinantal processes, C. R. Acad. Sci. Paris 46 (2010), 209-249 Zbl1216.15024MR2641777
- Joseph L. Doob, Classical potential theory and its probabilistic counterpart, (2001), Springer-Verlag, Berlin Zbl0990.31001MR1814344
- Freeman J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Mathematical Phys. 3 (1962), 1191-1198 Zbl0111.32703MR148397
- Peter Eichelsbacher, Wolfgang König, Ordered random walks, Electron. J. Probab. 13 (2008), no. 46, 1307-1336 Zbl1189.60092MR2430709
- Patrik L. Ferrari, René Frings, On the partial connection between random matrices and interacting particle systems, J. Stat. Phys. 141 (2010), 613-637 Zbl1205.82104MR2733398
- Peter J. Forrester, Taro Nagao, Determinantal correlations for classical projection processes, J. Stat. Mech.: Theory and Exp. 8 (2011) Zbl1023.60070
- Peter J. Forrester, Eric Nordenstam, The anti-symmetric GUE minor process, Mosc. Math. J. 9 (2009), 749-774, 934 Zbl1191.15032MR2663989
- Kurt Johansson, Non-intersecting paths, random tilings and random matrices, Probab. Theory Related Fields 123 (2002), 225-280 Zbl1008.60019MR1900323
- Kurt Johansson, Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003), 277-329 Zbl1031.60084MR2018275
- Kurt Johansson, The arctic circle boundary and the Airy process, Ann. Probab. 33 (2005), 1-30 Zbl1096.60039MR2118857
- Kurt Johansson, Non-intersecting, simple, symmetric random walks and the extended Hahn kernel, Ann. Inst. Fourier (Grenoble) 55 (2005), 2129-2145 Zbl1083.60079MR2187949
- Kurt Johansson, Random matrices and determinantal processes, Mathematical statistical physics (2006), 1-55, Elsevier B. V., Amsterdam Zbl05723794MR2581882
- Kurt Johansson, Eric Nordenstam, Eigenvalues of GUE minors, Electron. J. Probab. 11 (2006), no. 50, 1342-1371 Zbl1127.60047MR2268547
- Kurt Johansson, Eric Nordenstam, Erratum to: “Eigenvalues of GUE minors” [Electron. J. Probab. 11 (2006), no. 50, 1342–1371; MR2268547], Electron. J. Probab. 12 (2007), 1048-1051 (electronic) Zbl1134.60344MR2268547
- Samuel Karlin, James McGregor, Coincidence probabilities, Pacific J. Math. 9 (1959), 1141-1164 Zbl0092.34503MR114248
- Makoto Katori, Hideki Tanemura, Scaling limit of vicious walks and two-matrix model, Phys Rev E Stat Nonlin Soft Matter Phys (2002) Zbl1206.82044
- Makoto Katori, Hideki Tanemura, Functional central limit theorems for vicious walkers, Stoch. Stoch. Rep. 75 (2003), 369-390 Zbl1206.82044MR2029612
- Wolfgang König, Patrik Schmid, Random walks conditioned to stay in Weyl chambers of type C and D, (2009) Zbl1226.60067
- Odile Macchi, The coincidence approach to stochastic point processes, Advances in Appl. Probability 7 (1975), 83-122 Zbl0366.60081MR380979
- Madan Lal Mehta, Random matrices, 142 (2004), Elsevier/Academic Press, Amsterdam Zbl1107.15019MR2129906
- Taro Nagao, Peter J. Forrester, Multilevel dynamical correlation functions for dyson’s brownian motion model of random matrices, Physics Letters A 247 (1998), 42-46
- Eric Nordenstam, Interlaced particles in tilings and random matrices, (2009)
- Eric Nordenstam, On the shuffling algorithm for domino tilings, Electron. J. Probab. 15 (2010), no. 3, 75-95 Zbl1193.60015MR2578383
- Andrei Okounkov, Nicolai Reshetikhin, The birth of a random matrix, Mosc. Math. J. 6 (2006), 553-566, 588 Zbl1130.15014MR2274865
- Herbert Spohn, Interacting Brownian particles: a study of Dyson’s model, Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn., 1986) 9 (1987), 151-179, Springer, New York Zbl0674.60096MR914993
- Craig A. Tracy, Harold Widom, Differential equations for Dyson processes, Comm. Math. Phys. 252 (2004), 7-41 Zbl1124.82007MR2103903
- Jon Warren, Dyson’s Brownian motions, intertwining and interlacing, Electron. J. Probab. 12 (2007), no. 19, 573-590 Zbl1127.60078MR2299928