The Dyson Brownian Minor Process

Mark Adler[1]; Eric Nordenstam[2]; Pierre Van Moerbeke[3]

  • [1] Brandeis University Department of Mathematics Waltham, Mass 02454 (USA)
  • [2] Universität Wien Fakultät für Mathematik Oscar-Morgenstern-Platz 1 1090 Wien (Austria)
  • [3] Université de Louvain Department of Mathematics 1348 Louvain-la-Neuve (Belgium) Brandeis University Waltham, Mass 02454 (USA)

Annales de l’institut Fourier (2014)

  • Volume: 64, Issue: 3, page 971-1009
  • ISSN: 0373-0956

Abstract

top
Consider an n × n Hermitean matrix valued stochastic process { H t } t 0 where the elements evolve according to Ornstein-Uhlenbeck processes. It is well known that the eigenvalues perform a so called Dyson Brownian motion, that is they behave as Ornstein-Uhlenbeck processes conditioned never to intersect.In this paper we study not only the eigenvalues of the full matrix, but also the eigenvalues of all the principal minors. That is, the eigenvalues of the k × k minors in the upper left corner of H t . Projecting this process to a space-like path leads to a determinantal process for which we compute the kernel. This kernel contains the well known GUE minor kernel, and the Dyson Brownian motion kernel as special cases.In the bulk scaling limit of this kernel it is possible to recover a time-dependent generalisation of Boutillier’s bead kernel.We also compute the kernel for a process of intertwined Brownian motions introduced by Warren. That too is a determinantal process along space-like paths.

How to cite

top

Adler, Mark, Nordenstam, Eric, and Van Moerbeke, Pierre. "The Dyson Brownian Minor Process." Annales de l’institut Fourier 64.3 (2014): 971-1009. <http://eudml.org/doc/275428>.

@article{Adler2014,
abstract = {Consider an $n\times n$ Hermitean matrix valued stochastic process $\lbrace H_t\rbrace _\{t\ge 0\}$ where the elements evolve according to Ornstein-Uhlenbeck processes. It is well known that the eigenvalues perform a so called Dyson Brownian motion, that is they behave as Ornstein-Uhlenbeck processes conditioned never to intersect.In this paper we study not only the eigenvalues of the full matrix, but also the eigenvalues of all the principal minors. That is, the eigenvalues of the $k\times k$ minors in the upper left corner of $H_t$. Projecting this process to a space-like path leads to a determinantal process for which we compute the kernel. This kernel contains the well known GUE minor kernel, and the Dyson Brownian motion kernel as special cases.In the bulk scaling limit of this kernel it is possible to recover a time-dependent generalisation of Boutillier’s bead kernel.We also compute the kernel for a process of intertwined Brownian motions introduced by Warren. That too is a determinantal process along space-like paths.},
affiliation = {Brandeis University Department of Mathematics Waltham, Mass 02454 (USA); Universität Wien Fakultät für Mathematik Oscar-Morgenstern-Platz 1 1090 Wien (Austria); Université de Louvain Department of Mathematics 1348 Louvain-la-Neuve (Belgium) Brandeis University Waltham, Mass 02454 (USA)},
author = {Adler, Mark, Nordenstam, Eric, Van Moerbeke, Pierre},
journal = {Annales de l’institut Fourier},
keywords = {Dyson’s Brownian motion; bead kernel; extended kernels; Gaussian Unitary Ensemble; Dyson Brownian minor process; determinantal processes; correlation kernel; point processes},
language = {eng},
number = {3},
pages = {971-1009},
publisher = {Association des Annales de l’institut Fourier},
title = {The Dyson Brownian Minor Process},
url = {http://eudml.org/doc/275428},
volume = {64},
year = {2014},
}

TY - JOUR
AU - Adler, Mark
AU - Nordenstam, Eric
AU - Van Moerbeke, Pierre
TI - The Dyson Brownian Minor Process
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 971
EP - 1009
AB - Consider an $n\times n$ Hermitean matrix valued stochastic process $\lbrace H_t\rbrace _{t\ge 0}$ where the elements evolve according to Ornstein-Uhlenbeck processes. It is well known that the eigenvalues perform a so called Dyson Brownian motion, that is they behave as Ornstein-Uhlenbeck processes conditioned never to intersect.In this paper we study not only the eigenvalues of the full matrix, but also the eigenvalues of all the principal minors. That is, the eigenvalues of the $k\times k$ minors in the upper left corner of $H_t$. Projecting this process to a space-like path leads to a determinantal process for which we compute the kernel. This kernel contains the well known GUE minor kernel, and the Dyson Brownian motion kernel as special cases.In the bulk scaling limit of this kernel it is possible to recover a time-dependent generalisation of Boutillier’s bead kernel.We also compute the kernel for a process of intertwined Brownian motions introduced by Warren. That too is a determinantal process along space-like paths.
LA - eng
KW - Dyson’s Brownian motion; bead kernel; extended kernels; Gaussian Unitary Ensemble; Dyson Brownian minor process; determinantal processes; correlation kernel; point processes
UR - http://eudml.org/doc/275428
ER -

References

top
  1. Mark Adler, Pierre van Moerbeke, PDEs for the joint distributions of the Dyson, Airy and sine processes, Ann. Probab. 33 (2005), 1326-1361 Zbl1093.60021MR2150191
  2. Mark Adler, Eric Nordenstam, Pierre van Moerbeke, Dyson’s Brownian motions on the spectra of consecutive minors, Stoch. Processes and their Appl. 124 (2014), 2023-2051 Zbl1308.60013MR3188348
  3. Yu. Baryshnikov, GUEs and queues, Probab. Theory Related Fields 119 (2001), 256-274 Zbl0980.60042MR1818248
  4. Martin Bender, Global fluctuations in general β Dyson’s Brownian motion, Stochastic Process. Appl. 118 (2008), 1022-1042 Zbl1139.60342MR2418256
  5. Alexei Borodin, Determinantal point processes, The Oxford handbook of random matrix theory, Oxford University Press, Oxford (2011), 231-249 Zbl1238.60055MR2932631
  6. Alexei Borodin, Patrik L. Ferrari, Large time asymptotics of growth models on space-like paths. I. PushASEP, Electron. J. Probab. 13 (2008), no. 50, 1380-1418 Zbl1187.82084MR2438811
  7. Alexei Borodin, Patrik L. Ferrari, Michael Prähofer, Tomohiro Sasamoto, Fluctuation properties of the TASEP with periodic initial configuration, J. Stat. Phys. 129 (2007), 1055-1080 Zbl1136.82028MR2363389
  8. Alexei Borodin, Patrik L. Ferrari, Michael Prähofer, Tomohiro Sasamoto, Jon Warren, Maximum of Dyson Brownian motion and non-colliding systems with a boundary, Electron. Commun. Probab. 14 (2009), 486-494 Zbl1189.60169MR2559098
  9. Alexei Borodin, Patrik L. Ferrari, Tomohiro Sasamoto, Two speed TASEP, J. Stat. Phys. 137 (2009), 936-977 Zbl1183.82062MR2570757
  10. Alexei Borodin, Eric M. Rains, Eynard-Mehta theorem, Schur process, and their Pfaffian analogs, J. Stat. Phys. 121 (2005), 291-317 Zbl1127.82017MR2185331
  11. Cédric Boutillier, The bead model and limit behaviors of dimer models, Ann. Probab. 37 (2009), 107-142 Zbl1171.82006MR2489161
  12. Manon Defosseux, Orbit measures and interlaced determinantal point processes, C. R. Acad. Sci. Paris, Series I 346 (2008), 783-788 Zbl1157.60027MR2427082
  13. Manon Defosseux, Orbit measures, random matrix theory and interlaced determinantal processes, C. R. Acad. Sci. Paris 46 (2010), 209-249 Zbl1216.15024MR2641777
  14. Joseph L. Doob, Classical potential theory and its probabilistic counterpart, (2001), Springer-Verlag, Berlin Zbl0990.31001MR1814344
  15. Freeman J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Mathematical Phys. 3 (1962), 1191-1198 Zbl0111.32703MR148397
  16. Peter Eichelsbacher, Wolfgang König, Ordered random walks, Electron. J. Probab. 13 (2008), no. 46, 1307-1336 Zbl1189.60092MR2430709
  17. Patrik L. Ferrari, René Frings, On the partial connection between random matrices and interacting particle systems, J. Stat. Phys. 141 (2010), 613-637 Zbl1205.82104MR2733398
  18. Peter J. Forrester, Taro Nagao, Determinantal correlations for classical projection processes, J. Stat. Mech.: Theory and Exp. 8 (2011) Zbl1023.60070
  19. Peter J. Forrester, Eric Nordenstam, The anti-symmetric GUE minor process, Mosc. Math. J. 9 (2009), 749-774, 934 Zbl1191.15032MR2663989
  20. Kurt Johansson, Non-intersecting paths, random tilings and random matrices, Probab. Theory Related Fields 123 (2002), 225-280 Zbl1008.60019MR1900323
  21. Kurt Johansson, Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003), 277-329 Zbl1031.60084MR2018275
  22. Kurt Johansson, The arctic circle boundary and the Airy process, Ann. Probab. 33 (2005), 1-30 Zbl1096.60039MR2118857
  23. Kurt Johansson, Non-intersecting, simple, symmetric random walks and the extended Hahn kernel, Ann. Inst. Fourier (Grenoble) 55 (2005), 2129-2145 Zbl1083.60079MR2187949
  24. Kurt Johansson, Random matrices and determinantal processes, Mathematical statistical physics (2006), 1-55, Elsevier B. V., Amsterdam Zbl05723794MR2581882
  25. Kurt Johansson, Eric Nordenstam, Eigenvalues of GUE minors, Electron. J. Probab. 11 (2006), no. 50, 1342-1371 Zbl1127.60047MR2268547
  26. Kurt Johansson, Eric Nordenstam, Erratum to: “Eigenvalues of GUE minors” [Electron. J. Probab. 11 (2006), no. 50, 1342–1371; MR2268547], Electron. J. Probab. 12 (2007), 1048-1051 (electronic) Zbl1134.60344MR2268547
  27. Samuel Karlin, James McGregor, Coincidence probabilities, Pacific J. Math. 9 (1959), 1141-1164 Zbl0092.34503MR114248
  28. Makoto Katori, Hideki Tanemura, Scaling limit of vicious walks and two-matrix model, Phys Rev E Stat Nonlin Soft Matter Phys (2002) Zbl1206.82044
  29. Makoto Katori, Hideki Tanemura, Functional central limit theorems for vicious walkers, Stoch. Stoch. Rep. 75 (2003), 369-390 Zbl1206.82044MR2029612
  30. Wolfgang König, Patrik Schmid, Random walks conditioned to stay in Weyl chambers of type C and D, (2009) Zbl1226.60067
  31. Odile Macchi, The coincidence approach to stochastic point processes, Advances in Appl. Probability 7 (1975), 83-122 Zbl0366.60081MR380979
  32. Madan Lal Mehta, Random matrices, 142 (2004), Elsevier/Academic Press, Amsterdam Zbl1107.15019MR2129906
  33. Taro Nagao, Peter J. Forrester, Multilevel dynamical correlation functions for dyson’s brownian motion model of random matrices, Physics Letters A 247 (1998), 42-46 
  34. Eric Nordenstam, Interlaced particles in tilings and random matrices, (2009) 
  35. Eric Nordenstam, On the shuffling algorithm for domino tilings, Electron. J. Probab. 15 (2010), no. 3, 75-95 Zbl1193.60015MR2578383
  36. Andrei Okounkov, Nicolai Reshetikhin, The birth of a random matrix, Mosc. Math. J. 6 (2006), 553-566, 588 Zbl1130.15014MR2274865
  37. Herbert Spohn, Interacting Brownian particles: a study of Dyson’s model, Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn., 1986) 9 (1987), 151-179, Springer, New York Zbl0674.60096MR914993
  38. Craig A. Tracy, Harold Widom, Differential equations for Dyson processes, Comm. Math. Phys. 252 (2004), 7-41 Zbl1124.82007MR2103903
  39. Jon Warren, Dyson’s Brownian motions, intertwining and interlacing, Electron. J. Probab. 12 (2007), no. 19, 573-590 Zbl1127.60078MR2299928

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.