The Dyson Brownian Minor Process
Mark Adler[1]; Eric Nordenstam[2]; Pierre Van Moerbeke[3]
- [1] Brandeis University Department of Mathematics Waltham, Mass 02454 (USA)
- [2] Universität Wien Fakultät für Mathematik Oscar-Morgenstern-Platz 1 1090 Wien (Austria)
- [3] Université de Louvain Department of Mathematics 1348 Louvain-la-Neuve (Belgium) Brandeis University Waltham, Mass 02454 (USA)
Annales de l’institut Fourier (2014)
- Volume: 64, Issue: 3, page 971-1009
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topAdler, Mark, Nordenstam, Eric, and Van Moerbeke, Pierre. "The Dyson Brownian Minor Process." Annales de l’institut Fourier 64.3 (2014): 971-1009. <http://eudml.org/doc/275428>.
@article{Adler2014,
abstract = {Consider an $n\times n$ Hermitean matrix valued stochastic process $\lbrace H_t\rbrace _\{t\ge 0\}$ where the elements evolve according to Ornstein-Uhlenbeck processes. It is well known that the eigenvalues perform a so called Dyson Brownian motion, that is they behave as Ornstein-Uhlenbeck processes conditioned never to intersect.In this paper we study not only the eigenvalues of the full matrix, but also the eigenvalues of all the principal minors. That is, the eigenvalues of the $k\times k$ minors in the upper left corner of $H_t$. Projecting this process to a space-like path leads to a determinantal process for which we compute the kernel. This kernel contains the well known GUE minor kernel, and the Dyson Brownian motion kernel as special cases.In the bulk scaling limit of this kernel it is possible to recover a time-dependent generalisation of Boutillier’s bead kernel.We also compute the kernel for a process of intertwined Brownian motions introduced by Warren. That too is a determinantal process along space-like paths.},
affiliation = {Brandeis University Department of Mathematics Waltham, Mass 02454 (USA); Universität Wien Fakultät für Mathematik Oscar-Morgenstern-Platz 1 1090 Wien (Austria); Université de Louvain Department of Mathematics 1348 Louvain-la-Neuve (Belgium) Brandeis University Waltham, Mass 02454 (USA)},
author = {Adler, Mark, Nordenstam, Eric, Van Moerbeke, Pierre},
journal = {Annales de l’institut Fourier},
keywords = {Dyson’s Brownian motion; bead kernel; extended kernels; Gaussian Unitary Ensemble; Dyson Brownian minor process; determinantal processes; correlation kernel; point processes},
language = {eng},
number = {3},
pages = {971-1009},
publisher = {Association des Annales de l’institut Fourier},
title = {The Dyson Brownian Minor Process},
url = {http://eudml.org/doc/275428},
volume = {64},
year = {2014},
}
TY - JOUR
AU - Adler, Mark
AU - Nordenstam, Eric
AU - Van Moerbeke, Pierre
TI - The Dyson Brownian Minor Process
JO - Annales de l’institut Fourier
PY - 2014
PB - Association des Annales de l’institut Fourier
VL - 64
IS - 3
SP - 971
EP - 1009
AB - Consider an $n\times n$ Hermitean matrix valued stochastic process $\lbrace H_t\rbrace _{t\ge 0}$ where the elements evolve according to Ornstein-Uhlenbeck processes. It is well known that the eigenvalues perform a so called Dyson Brownian motion, that is they behave as Ornstein-Uhlenbeck processes conditioned never to intersect.In this paper we study not only the eigenvalues of the full matrix, but also the eigenvalues of all the principal minors. That is, the eigenvalues of the $k\times k$ minors in the upper left corner of $H_t$. Projecting this process to a space-like path leads to a determinantal process for which we compute the kernel. This kernel contains the well known GUE minor kernel, and the Dyson Brownian motion kernel as special cases.In the bulk scaling limit of this kernel it is possible to recover a time-dependent generalisation of Boutillier’s bead kernel.We also compute the kernel for a process of intertwined Brownian motions introduced by Warren. That too is a determinantal process along space-like paths.
LA - eng
KW - Dyson’s Brownian motion; bead kernel; extended kernels; Gaussian Unitary Ensemble; Dyson Brownian minor process; determinantal processes; correlation kernel; point processes
UR - http://eudml.org/doc/275428
ER -
References
top- Mark Adler, Pierre van Moerbeke, PDEs for the joint distributions of the Dyson, Airy and sine processes, Ann. Probab. 33 (2005), 1326-1361 Zbl1093.60021MR2150191
- Mark Adler, Eric Nordenstam, Pierre van Moerbeke, Dyson’s Brownian motions on the spectra of consecutive minors, Stoch. Processes and their Appl. 124 (2014), 2023-2051 Zbl1308.60013MR3188348
- Yu. Baryshnikov, GUEs and queues, Probab. Theory Related Fields 119 (2001), 256-274 Zbl0980.60042MR1818248
- Martin Bender, Global fluctuations in general Dyson’s Brownian motion, Stochastic Process. Appl. 118 (2008), 1022-1042 Zbl1139.60342MR2418256
- Alexei Borodin, Determinantal point processes, The Oxford handbook of random matrix theory, Oxford University Press, Oxford (2011), 231-249 Zbl1238.60055MR2932631
- Alexei Borodin, Patrik L. Ferrari, Large time asymptotics of growth models on space-like paths. I. PushASEP, Electron. J. Probab. 13 (2008), no. 50, 1380-1418 Zbl1187.82084MR2438811
- Alexei Borodin, Patrik L. Ferrari, Michael Prähofer, Tomohiro Sasamoto, Fluctuation properties of the TASEP with periodic initial configuration, J. Stat. Phys. 129 (2007), 1055-1080 Zbl1136.82028MR2363389
- Alexei Borodin, Patrik L. Ferrari, Michael Prähofer, Tomohiro Sasamoto, Jon Warren, Maximum of Dyson Brownian motion and non-colliding systems with a boundary, Electron. Commun. Probab. 14 (2009), 486-494 Zbl1189.60169MR2559098
- Alexei Borodin, Patrik L. Ferrari, Tomohiro Sasamoto, Two speed TASEP, J. Stat. Phys. 137 (2009), 936-977 Zbl1183.82062MR2570757
- Alexei Borodin, Eric M. Rains, Eynard-Mehta theorem, Schur process, and their Pfaffian analogs, J. Stat. Phys. 121 (2005), 291-317 Zbl1127.82017MR2185331
- Cédric Boutillier, The bead model and limit behaviors of dimer models, Ann. Probab. 37 (2009), 107-142 Zbl1171.82006MR2489161
- Manon Defosseux, Orbit measures and interlaced determinantal point processes, C. R. Acad. Sci. Paris, Series I 346 (2008), 783-788 Zbl1157.60027MR2427082
- Manon Defosseux, Orbit measures, random matrix theory and interlaced determinantal processes, C. R. Acad. Sci. Paris 46 (2010), 209-249 Zbl1216.15024MR2641777
- Joseph L. Doob, Classical potential theory and its probabilistic counterpart, (2001), Springer-Verlag, Berlin Zbl0990.31001MR1814344
- Freeman J. Dyson, A Brownian-motion model for the eigenvalues of a random matrix, J. Mathematical Phys. 3 (1962), 1191-1198 Zbl0111.32703MR148397
- Peter Eichelsbacher, Wolfgang König, Ordered random walks, Electron. J. Probab. 13 (2008), no. 46, 1307-1336 Zbl1189.60092MR2430709
- Patrik L. Ferrari, René Frings, On the partial connection between random matrices and interacting particle systems, J. Stat. Phys. 141 (2010), 613-637 Zbl1205.82104MR2733398
- Peter J. Forrester, Taro Nagao, Determinantal correlations for classical projection processes, J. Stat. Mech.: Theory and Exp. 8 (2011) Zbl1023.60070
- Peter J. Forrester, Eric Nordenstam, The anti-symmetric GUE minor process, Mosc. Math. J. 9 (2009), 749-774, 934 Zbl1191.15032MR2663989
- Kurt Johansson, Non-intersecting paths, random tilings and random matrices, Probab. Theory Related Fields 123 (2002), 225-280 Zbl1008.60019MR1900323
- Kurt Johansson, Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003), 277-329 Zbl1031.60084MR2018275
- Kurt Johansson, The arctic circle boundary and the Airy process, Ann. Probab. 33 (2005), 1-30 Zbl1096.60039MR2118857
- Kurt Johansson, Non-intersecting, simple, symmetric random walks and the extended Hahn kernel, Ann. Inst. Fourier (Grenoble) 55 (2005), 2129-2145 Zbl1083.60079MR2187949
- Kurt Johansson, Random matrices and determinantal processes, Mathematical statistical physics (2006), 1-55, Elsevier B. V., Amsterdam Zbl05723794MR2581882
- Kurt Johansson, Eric Nordenstam, Eigenvalues of GUE minors, Electron. J. Probab. 11 (2006), no. 50, 1342-1371 Zbl1127.60047MR2268547
- Kurt Johansson, Eric Nordenstam, Erratum to: “Eigenvalues of GUE minors” [Electron. J. Probab. 11 (2006), no. 50, 1342–1371; MR2268547], Electron. J. Probab. 12 (2007), 1048-1051 (electronic) Zbl1134.60344MR2268547
- Samuel Karlin, James McGregor, Coincidence probabilities, Pacific J. Math. 9 (1959), 1141-1164 Zbl0092.34503MR114248
- Makoto Katori, Hideki Tanemura, Scaling limit of vicious walks and two-matrix model, Phys Rev E Stat Nonlin Soft Matter Phys (2002) Zbl1206.82044
- Makoto Katori, Hideki Tanemura, Functional central limit theorems for vicious walkers, Stoch. Stoch. Rep. 75 (2003), 369-390 Zbl1206.82044MR2029612
- Wolfgang König, Patrik Schmid, Random walks conditioned to stay in Weyl chambers of type C and D, (2009) Zbl1226.60067
- Odile Macchi, The coincidence approach to stochastic point processes, Advances in Appl. Probability 7 (1975), 83-122 Zbl0366.60081MR380979
- Madan Lal Mehta, Random matrices, 142 (2004), Elsevier/Academic Press, Amsterdam Zbl1107.15019MR2129906
- Taro Nagao, Peter J. Forrester, Multilevel dynamical correlation functions for dyson’s brownian motion model of random matrices, Physics Letters A 247 (1998), 42-46
- Eric Nordenstam, Interlaced particles in tilings and random matrices, (2009)
- Eric Nordenstam, On the shuffling algorithm for domino tilings, Electron. J. Probab. 15 (2010), no. 3, 75-95 Zbl1193.60015MR2578383
- Andrei Okounkov, Nicolai Reshetikhin, The birth of a random matrix, Mosc. Math. J. 6 (2006), 553-566, 588 Zbl1130.15014MR2274865
- Herbert Spohn, Interacting Brownian particles: a study of Dyson’s model, Hydrodynamic behavior and interacting particle systems (Minneapolis, Minn., 1986) 9 (1987), 151-179, Springer, New York Zbl0674.60096MR914993
- Craig A. Tracy, Harold Widom, Differential equations for Dyson processes, Comm. Math. Phys. 252 (2004), 7-41 Zbl1124.82007MR2103903
- Jon Warren, Dyson’s Brownian motions, intertwining and interlacing, Electron. J. Probab. 12 (2007), no. 19, 573-590 Zbl1127.60078MR2299928
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.