On the coupling property of Lévy processes
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 4, page 1147-1159
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topSchilling, René L., and Wang, Jian. "On the coupling property of Lévy processes." Annales de l'I.H.P. Probabilités et statistiques 47.4 (2011): 1147-1159. <http://eudml.org/doc/240107>.
@article{Schilling2011,
abstract = {We give necessary and sufficient conditions guaranteeing that the coupling for Lévy processes (with non-degenerate jump part) is successful. Our method relies on explicit formulae for the transition semigroup of a compound Poisson process and earlier results by Mineka and Lindvall–Rogers on couplings of random walks. In particular, we obtain that a Lévy process admits a successful coupling, if it is a strong Feller process or if the Lévy (jump) measure has an absolutely continuous component.},
author = {Schilling, René L., Wang, Jian},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {coupling property; Lévy processes; compound Poisson processes; random walks; Mineka coupling; strong Feller property},
language = {eng},
number = {4},
pages = {1147-1159},
publisher = {Gauthier-Villars},
title = {On the coupling property of Lévy processes},
url = {http://eudml.org/doc/240107},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Schilling, René L.
AU - Wang, Jian
TI - On the coupling property of Lévy processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 1147
EP - 1159
AB - We give necessary and sufficient conditions guaranteeing that the coupling for Lévy processes (with non-degenerate jump part) is successful. Our method relies on explicit formulae for the transition semigroup of a compound Poisson process and earlier results by Mineka and Lindvall–Rogers on couplings of random walks. In particular, we obtain that a Lévy process admits a successful coupling, if it is a strong Feller process or if the Lévy (jump) measure has an absolutely continuous component.
LA - eng
KW - coupling property; Lévy processes; compound Poisson processes; random walks; Mineka coupling; strong Feller property
UR - http://eudml.org/doc/240107
ER -
References
top- [1] B. Böttcher, R. L. Schilling and J. Wang. Constructions of coupling processes for Lévy processes. Stochastic Process. Appl. To appear (2011). Available at arXiv:1009.5511v1. Zbl1217.60035MR2794973
- [2] M. F. Chen. Eigenvalues, Inequalities and Ergodic Theory. Springer, London, 2005. Zbl1079.60005MR2105651
- [3] M. Cranston and A. Greven. Coupling and harmonic functions in the case of continuous time Markov processes. Stochastic Process. Appl. 60 (1995) 261–286. Zbl0845.60075MR1376804
- [4] M. Cranston and F.-Y. Wang. A condition for the equivalence of coupling and shift-coupling. Ann. Probab. 28 (2000) 1666–1679. Zbl1044.60066MR1813838
- [5] J. Hawkes. Potential theory of Lévy processes. Proc. London Math. Soc. 38 (1979) 335–352. Zbl0401.60069MR531166
- [6] N. Jacob. Pseudo Differential Operators and Markov Processes. Volume 1: Fourier Analysis and Semigroups. Imperial College Press, London, 2001. Zbl0987.60003MR1873235
- [7] T. Lindvall. Lectures on the Coupling Method. Wiley, New York, 1992. Zbl0850.60019MR1180522
- [8] T. Lindvall and L. C. G. Rogers. On the coupling of random walks and renewal processes. J. Appl. Probab. 33 (1996) 122–126. Zbl0851.60072MR1371959
- [9] J. Mineka. A criterion for tail events for sums of independent random variables. Z. Wahrsch. Verw. Gebiete 25 (1973) 163–170. Zbl0237.60024MR350890
- [10] D. Revuz. Markov Chains, 2nd edition. North-Holland Mathematical Library 11. North-Holland, Netherlands, 1984. Zbl0539.60073MR758799
- [11] K. Sato. Lévy Processes and Infinitely Divisible Distributions. Studies Adv. Math. 68. Cambridge Univ. Press, Cambridge, 1999. Zbl0973.60001MR1739520
- [12] H. Thorisson. Shift-coupling in continuous time. Probab. Theory Related Fields 99 (1994) 477–483. Zbl0801.60043MR1288066
- [13] H. Thorisson. Coupling, Stationarity and Regeneration. Springer, New York, 2000. Zbl1044.60510MR1741181
- [14] F.-Y. Wang. Coupling for Ornstein–Uhlenbeck jump processes. Bernoulli (2010). To appear. Available at arXiv:1002.2890v5. MR1267649
- [15] F.-Y. Wang. Functional Inequalities, Markov Processes and Spectral Theory. Science Press, Beijing, 2005. MR2127729
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.