The monotone cumulants
Annales de l'I.H.P. Probabilités et statistiques (2011)
- Volume: 47, Issue: 4, page 1160-1170
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topHasebe, Takahiro, and Saigo, Hayato. "The monotone cumulants." Annales de l'I.H.P. Probabilités et statistiques 47.4 (2011): 1160-1170. <http://eudml.org/doc/240114>.
@article{Hasebe2011,
abstract = {In the present paper we define the notion of generalized cumulants which gives a universal framework for commutative, free, Boolean and especially, monotone probability theories. The uniqueness of generalized cumulants holds for each independence, and hence, generalized cumulants are equal to the usual cumulants in the commutative, free and Boolean cases. The way we define (generalized) cumulants needs neither partition lattices nor generating functions and then will give a new viewpoint to cumulants. We define “monotone cumulants” in the sense of generalized cumulants and we obtain quite simple proofs of central limit theorem and Poisson’s law of small numbers in monotone probability theory. Moreover, we clarify a combinatorial structure of moment-cumulant formula with the use of “monotone partitions.”},
author = {Hasebe, Takahiro, Saigo, Hayato},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {monotone independence; cumulants; umbral calculus},
language = {eng},
number = {4},
pages = {1160-1170},
publisher = {Gauthier-Villars},
title = {The monotone cumulants},
url = {http://eudml.org/doc/240114},
volume = {47},
year = {2011},
}
TY - JOUR
AU - Hasebe, Takahiro
AU - Saigo, Hayato
TI - The monotone cumulants
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 1160
EP - 1170
AB - In the present paper we define the notion of generalized cumulants which gives a universal framework for commutative, free, Boolean and especially, monotone probability theories. The uniqueness of generalized cumulants holds for each independence, and hence, generalized cumulants are equal to the usual cumulants in the commutative, free and Boolean cases. The way we define (generalized) cumulants needs neither partition lattices nor generating functions and then will give a new viewpoint to cumulants. We define “monotone cumulants” in the sense of generalized cumulants and we obtain quite simple proofs of central limit theorem and Poisson’s law of small numbers in monotone probability theory. Moreover, we clarify a combinatorial structure of moment-cumulant formula with the use of “monotone partitions.”
LA - eng
KW - monotone independence; cumulants; umbral calculus
UR - http://eudml.org/doc/240114
ER -
References
top- [1] A. C. R. Belton. A note on vacuum-adapted semimartingales and monotone independence. In Quantum Probability and Infinite Dimensional Analysis 105–114. QP–PQ: Quantum Probab. White Noise Anal. 18. World Sci. Publ., Hackensack, NJ, 2005. MR2211883
- [2] A. C. R. Belton. On the path structure of a semimartingale arising from monotone probability theory. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 258–279. Zbl1180.60037MR2446323
- [3] A. Ben Ghorbal and M. Schürmann. Non-commutative notions of stochastic independence. Math. Proc. Comb. Phil. Soc. 133 (2002) 531–561. Zbl1028.46094MR1919720
- [4] E. Di Nardo and D. Senato. Umbral nature of the Poisson random variables. In Algebraic Combinatorics and Computer Science: A Tribute to Gian-Carlo Rota 245–266. H. Crapo and D. Senato (Eds). Springer, Milan, 2001. Zbl0970.05012MR1854481
- [5] K. L. Chung. A Course in Probability Theory. Brace & World, Harcourt, 1968. Zbl0345.60003MR229268
- [6] T. Hasebe and H. Saigo. Joint cumulants for natural independence. Available at arXiv:1005.3900v1. Zbl1247.46052MR2836756
- [7] F. Lehner. Cumulants in noncommutative probability theory I. Math. Z. 248 (2004) 67–100. Zbl1089.46040MR2092722
- [8] R. Lenczewski and R. Sałapata. Discrete interpolation between monotone probability and free probability. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006) 77–106. Zbl1139.46302MR2214503
- [9] R. Lenczewski and R. Sałapata. Noncommutative Brownian motions associated with Kesten distributions and related Poisson processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008) 351–375. Zbl1165.46032MR2446514
- [10] N. Muraki. Monotonic convolution and monotonic Lévy–Hinčin formula. Preprint, 2000.
- [11] N. Muraki. Monotonic independence, monotonic central limit theorem and monotonic law of small numbers. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001) 39–58. Zbl1046.46049MR1824472
- [12] N. Muraki. The five independences as quasi-universal products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002) 113–134. Zbl1055.46514MR1895232
- [13] N. Muraki. The five independences as natural products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003) 337–371. Zbl1053.81057MR2016316
- [14] N. Obata. Notions of independence in quantum probability and spectral analysis of graphs. Amer. Math. Soc. Trans. 223 (2008) 115–136. Zbl1170.46056MR2441422
- [15] G.-C. Rota and B. D. Taylor. The classical umbral calculus. SIAM J. Math. Anal. 25 (1994) 694–711. Zbl0797.05006MR1266584
- [16] H. Saigo. A simple proof for monotone CLT. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13 (2010) 339–343. Zbl1204.46034MR2669052
- [17] A. N. Shiryayev. Probability. Springer, New York, 1984. MR737192
- [18] R. Speicher. Multiplicative functions on the lattice of non-crossing partitions and free convolution. Math. Ann. 298 (1994) 611–628. Zbl0791.06010MR1268597
- [19] R. Speicher. On universal products. In Free Probability Theory 257–266. D. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc., Providence, RI, 1997. Zbl0877.46044MR1426844
- [20] R. Speicher and R. Woroudi. Boolean convolution. In Free Probability Theory 267–280. D. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc., Providence, RI, 1997. Zbl0872.46033MR1426845
- [21] D. Voiculescu. Symmetries of some reduced free product algebras. In Operator Algebras and Their Connections With Topology and Ergodic Theory 556–588. Lect. Notes in Math. 1132. Springer, Berlin, 1985. Zbl0618.46048MR799593
- [22] D. Voiculescu. Addition of certain non-commutative random variables. J. Funct. Anal. 66 (1986) 323–346. Zbl0651.46063MR839105
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.