The monotone cumulants

Takahiro Hasebe; Hayato Saigo

Annales de l'I.H.P. Probabilités et statistiques (2011)

  • Volume: 47, Issue: 4, page 1160-1170
  • ISSN: 0246-0203

Abstract

top
In the present paper we define the notion of generalized cumulants which gives a universal framework for commutative, free, Boolean and especially, monotone probability theories. The uniqueness of generalized cumulants holds for each independence, and hence, generalized cumulants are equal to the usual cumulants in the commutative, free and Boolean cases. The way we define (generalized) cumulants needs neither partition lattices nor generating functions and then will give a new viewpoint to cumulants. We define “monotone cumulants” in the sense of generalized cumulants and we obtain quite simple proofs of central limit theorem and Poisson’s law of small numbers in monotone probability theory. Moreover, we clarify a combinatorial structure of moment-cumulant formula with the use of “monotone partitions.”

How to cite

top

Hasebe, Takahiro, and Saigo, Hayato. "The monotone cumulants." Annales de l'I.H.P. Probabilités et statistiques 47.4 (2011): 1160-1170. <http://eudml.org/doc/240114>.

@article{Hasebe2011,
abstract = {In the present paper we define the notion of generalized cumulants which gives a universal framework for commutative, free, Boolean and especially, monotone probability theories. The uniqueness of generalized cumulants holds for each independence, and hence, generalized cumulants are equal to the usual cumulants in the commutative, free and Boolean cases. The way we define (generalized) cumulants needs neither partition lattices nor generating functions and then will give a new viewpoint to cumulants. We define “monotone cumulants” in the sense of generalized cumulants and we obtain quite simple proofs of central limit theorem and Poisson’s law of small numbers in monotone probability theory. Moreover, we clarify a combinatorial structure of moment-cumulant formula with the use of “monotone partitions.”},
author = {Hasebe, Takahiro, Saigo, Hayato},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {monotone independence; cumulants; umbral calculus},
language = {eng},
number = {4},
pages = {1160-1170},
publisher = {Gauthier-Villars},
title = {The monotone cumulants},
url = {http://eudml.org/doc/240114},
volume = {47},
year = {2011},
}

TY - JOUR
AU - Hasebe, Takahiro
AU - Saigo, Hayato
TI - The monotone cumulants
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2011
PB - Gauthier-Villars
VL - 47
IS - 4
SP - 1160
EP - 1170
AB - In the present paper we define the notion of generalized cumulants which gives a universal framework for commutative, free, Boolean and especially, monotone probability theories. The uniqueness of generalized cumulants holds for each independence, and hence, generalized cumulants are equal to the usual cumulants in the commutative, free and Boolean cases. The way we define (generalized) cumulants needs neither partition lattices nor generating functions and then will give a new viewpoint to cumulants. We define “monotone cumulants” in the sense of generalized cumulants and we obtain quite simple proofs of central limit theorem and Poisson’s law of small numbers in monotone probability theory. Moreover, we clarify a combinatorial structure of moment-cumulant formula with the use of “monotone partitions.”
LA - eng
KW - monotone independence; cumulants; umbral calculus
UR - http://eudml.org/doc/240114
ER -

References

top
  1. [1] A. C. R. Belton. A note on vacuum-adapted semimartingales and monotone independence. In Quantum Probability and Infinite Dimensional Analysis 105–114. QP–PQ: Quantum Probab. White Noise Anal. 18. World Sci. Publ., Hackensack, NJ, 2005. MR2211883
  2. [2] A. C. R. Belton. On the path structure of a semimartingale arising from monotone probability theory. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 258–279. Zbl1180.60037MR2446323
  3. [3] A. Ben Ghorbal and M. Schürmann. Non-commutative notions of stochastic independence. Math. Proc. Comb. Phil. Soc. 133 (2002) 531–561. Zbl1028.46094MR1919720
  4. [4] E. Di Nardo and D. Senato. Umbral nature of the Poisson random variables. In Algebraic Combinatorics and Computer Science: A Tribute to Gian-Carlo Rota 245–266. H. Crapo and D. Senato (Eds). Springer, Milan, 2001. Zbl0970.05012MR1854481
  5. [5] K. L. Chung. A Course in Probability Theory. Brace & World, Harcourt, 1968. Zbl0345.60003MR229268
  6. [6] T. Hasebe and H. Saigo. Joint cumulants for natural independence. Available at arXiv:1005.3900v1. Zbl1247.46052MR2836756
  7. [7] F. Lehner. Cumulants in noncommutative probability theory I. Math. Z. 248 (2004) 67–100. Zbl1089.46040MR2092722
  8. [8] R. Lenczewski and R. Sałapata. Discrete interpolation between monotone probability and free probability. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9 (2006) 77–106. Zbl1139.46302MR2214503
  9. [9] R. Lenczewski and R. Sałapata. Noncommutative Brownian motions associated with Kesten distributions and related Poisson processes. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 11 (2008) 351–375. Zbl1165.46032MR2446514
  10. [10] N. Muraki. Monotonic convolution and monotonic Lévy–Hinčin formula. Preprint, 2000. 
  11. [11] N. Muraki. Monotonic independence, monotonic central limit theorem and monotonic law of small numbers. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001) 39–58. Zbl1046.46049MR1824472
  12. [12] N. Muraki. The five independences as quasi-universal products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 5 (2002) 113–134. Zbl1055.46514MR1895232
  13. [13] N. Muraki. The five independences as natural products. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 6 (2003) 337–371. Zbl1053.81057MR2016316
  14. [14] N. Obata. Notions of independence in quantum probability and spectral analysis of graphs. Amer. Math. Soc. Trans. 223 (2008) 115–136. Zbl1170.46056MR2441422
  15. [15] G.-C. Rota and B. D. Taylor. The classical umbral calculus. SIAM J. Math. Anal. 25 (1994) 694–711. Zbl0797.05006MR1266584
  16. [16] H. Saigo. A simple proof for monotone CLT. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 13 (2010) 339–343. Zbl1204.46034MR2669052
  17. [17] A. N. Shiryayev. Probability. Springer, New York, 1984. MR737192
  18. [18] R. Speicher. Multiplicative functions on the lattice of non-crossing partitions and free convolution. Math. Ann. 298 (1994) 611–628. Zbl0791.06010MR1268597
  19. [19] R. Speicher. On universal products. In Free Probability Theory 257–266. D. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc., Providence, RI, 1997. Zbl0877.46044MR1426844
  20. [20] R. Speicher and R. Woroudi. Boolean convolution. In Free Probability Theory 267–280. D. Voiculescu (Ed.). Fields Inst. Commun. 12. Amer. Math. Soc., Providence, RI, 1997. Zbl0872.46033MR1426845
  21. [21] D. Voiculescu. Symmetries of some reduced free product algebras. In Operator Algebras and Their Connections With Topology and Ergodic Theory 556–588. Lect. Notes in Math. 1132. Springer, Berlin, 1985. Zbl0618.46048MR799593
  22. [22] D. Voiculescu. Addition of certain non-commutative random variables. J. Funct. Anal. 66 (1986) 323–346. Zbl0651.46063MR839105

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.