On the path structure of a semimartingale arising from monotone probability theory

Alexander C. R. Belton

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 2, page 258-279
  • ISSN: 0246-0203

Abstract

top
Let X be the unique normal martingale such that X0=0 and d[X]t=(1−t−Xt−) dXt+dt and let Yt:=Xt+t for all t≥0; the semimartingale Y arises in quantum probability, where it is the monotone-independent analogue of the Poisson process. The trajectories of Y are examined and various probabilistic properties are derived; in particular, the level set {t≥0: Yt=1} is shown to be non-empty, compact, perfect and of zero Lebesgue measure. The local times of Y are found to be trivial except for that at level 1; consequently, the jumps of Y are not locally summable.

How to cite

top

Belton, Alexander C. R.. "On the path structure of a semimartingale arising from monotone probability theory." Annales de l'I.H.P. Probabilités et statistiques 44.2 (2008): 258-279. <http://eudml.org/doc/77969>.

@article{Belton2008,
abstract = {Let X be the unique normal martingale such that X0=0 and d[X]t=(1−t−Xt−) dXt+dt and let Yt:=Xt+t for all t≥0; the semimartingale Y arises in quantum probability, where it is the monotone-independent analogue of the Poisson process. The trajectories of Y are examined and various probabilistic properties are derived; in particular, the level set \{t≥0: Yt=1\} is shown to be non-empty, compact, perfect and of zero Lebesgue measure. The local times of Y are found to be trivial except for that at level 1; consequently, the jumps of Y are not locally summable.},
author = {Belton, Alexander C. R.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {monotone independence; monotone Poisson process; non-commutative probability; quantum probability},
language = {eng},
number = {2},
pages = {258-279},
publisher = {Gauthier-Villars},
title = {On the path structure of a semimartingale arising from monotone probability theory},
url = {http://eudml.org/doc/77969},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Belton, Alexander C. R.
TI - On the path structure of a semimartingale arising from monotone probability theory
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 2
SP - 258
EP - 279
AB - Let X be the unique normal martingale such that X0=0 and d[X]t=(1−t−Xt−) dXt+dt and let Yt:=Xt+t for all t≥0; the semimartingale Y arises in quantum probability, where it is the monotone-independent analogue of the Poisson process. The trajectories of Y are examined and various probabilistic properties are derived; in particular, the level set {t≥0: Yt=1} is shown to be non-empty, compact, perfect and of zero Lebesgue measure. The local times of Y are found to be trivial except for that at level 1; consequently, the jumps of Y are not locally summable.
LA - eng
KW - monotone independence; monotone Poisson process; non-commutative probability; quantum probability
UR - http://eudml.org/doc/77969
ER -

References

top
  1. [1] S. Attal. The structure of the quantum semimartingale algebras. J. Operator Theory 46 (2001) 391–410. Zbl0999.81035MR1870414
  2. [2] S. Attal and A. C. R. Belton. The chaotic-representation property for a class of normal martingales. Probab. Theory Related Fields 139 (2007) 543–562. Zbl1130.60049MR2322707
  3. [3] J. Azéma. Sur les fermés aléatoires. Séminaire de Probabilités XIX 397–495. J. Azéma and M. Yor (Eds). Lecture Notes in Math. 1123. Spring- er, Berlin, 1985. Zbl0563.60038MR889496
  4. [4] J. Azéma and M. Yor. Étude d’une martingale remarquable. Séminaire de Probabilités XXIII 88–130. J. Azéma, P.-A. Meyer and M. Yor (Eds). Lecture Notes in Math. 1372. Springer, Berlin, 1989. Zbl0743.60045MR1022900
  5. [5] A. C. R. Belton. An isomorphism of quantum semimartingale algebras. Q. J. Math. 55 (2004) 135–165. Zbl1059.81101MR2068315
  6. [6] A. C. R. Belton. A note on vacuum-adapted semimartingales and monotone independence. In Quantum Probability and Infinite Dimensional Analysis XVIII. From Foundations to Applications, 105–114. M. Schürmann and U. Franz (Eds), World Scientific, Singapore, 2005. MR2211883
  7. [7] A. C. R. Belton. The monotone Poisson process. In Quantum Probability 99–115. M. Bożejko, W. Młotkowski and J. Wysoczański (Eds). Banach Center Publications 73, Polish Academy of Sciences, Warsaw, 2006. Zbl1109.46052MR2423119
  8. [8] P. Billingsley. Probability and Measure, 3rd edition. Wiley, New York, 1995. Zbl0822.60002MR1324786
  9. [9] C. S. Chou. Caractérisation d’une classe de semimartingales. Séminaire de Probabilités XIII 250–252. C. Dellacherie, P.-A. Meyer and M. Weil (Eds). Lecture Notes in Math. 721. Springer, Berlin, 1979. Zbl0409.60045MR544798
  10. [10] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth. On the Lambert W function. Adv. Comput. Math. 5 (1996) 329–359. Zbl0863.65008MR1414285
  11. [11] F. Delbaen and W. Schachermayer. The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312 (1998) 215–250. Zbl0917.60048MR1671792
  12. [12] M. Émery. Compensation de processus à variation finie non localement intégrables. Séminaire de Probabilités XIV 152–160. J. Azéma and M. Yor (Eds). Lecture Notes in Math. 784. Springer, Berlin, 1980. Zbl0428.60054
  13. [13] M. Émery. On the Azéma martingales. Séminaire de Probabilités XXIII 66–87. J. Azéma, P.-A. Meyer and M. Yor (Eds). Lecture Notes in Math. 1372. Springer, Berlin, 1989. Zbl0753.60045
  14. [14] M. Émery. Personal communication, 2006. 
  15. [15] R. L. Graham, D. E. Knuth and O. Patashnik. Concrete Mathematics, 2nd edition. Addison-Wesley, Reading, MA, 1994. Zbl0668.00003MR1397498
  16. [16] N. Muraki. Monotonic independence, monotonic central limit theorem and monotonic law of small numbers. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 4 (2001) 39–58. Zbl1046.46049MR1824472
  17. [17] P. Protter. Stochastic Integration and Differential Equations. A New Approach. Springer, Berlin, 1990. Zbl0694.60047MR1037262
  18. [18] L. C. G. Rogers and D. Williams. Diffusions, Markov Processes and Martingales. Volume 1: Foundations, 2nd edition. Cambridge University Press, Cambridge, 2000. Zbl0949.60003MR1796539
  19. [19] W. Rudin. Real and Complex Analysis, 3rd edition. McGraw-Hill, New York, 1987. Zbl0925.00005MR924157
  20. [20] R. Speicher. A new example of “independence” and “white noise”. Probab. Theory Related Fields 84 (1990) 141–159. Zbl0671.60109MR1030725
  21. [21] C. Stricker. Représentation prévisible et changement de temps. Ann. Probab. 14 (1986) 1070–1074. Zbl0603.60038MR841606
  22. [22] C. Stricker and M. Yor. Calcul stochastique dépendant d’un paramètre. Z. Wahrsch. Verw. Gebiete 45 (1978) 109–133. Zbl0388.60056MR510530
  23. [23] G. Taviot. Martingales et équations de structure: étude géométrique. Thèse, Université Louis Pasteur Strasbourg 1, 1999. Zbl0953.60022MR1736397
  24. [24] S. J. Taylor. The α-dimensional measure of the graph and set of zeros of a Brownian path. Proc. Cambridge Philos. Soc. 51 (1955) 265–274. Zbl0064.05201MR74494

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.