On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains

Harish Seshadri

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)

  • Volume: 5, Issue: 3, page 393-417
  • ISSN: 0391-173X

Abstract

top
Let Ω 1 and Ω 2 be strongly pseudoconvex domains in n and f : Ω 1 Ω 2 an isometry for the Kobayashi or Carathéodory metrics. Suppose that f extends as a C 1 map to Ω ¯ 1 . We then prove that f | Ω 1 : Ω 1 Ω 2 is a CR or anti-CR diffeomorphism. It follows that Ω 1 and Ω 2 must be biholomorphic or anti-biholomorphic.

How to cite

top

Seshadri, Harish. "On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.3 (2006): 393-417. <http://eudml.org/doc/240414>.

@article{Seshadri2006,
abstract = {Let $\Omega _1$ and $\Omega _2$ be $\rm strongly \ pseudoconvex $ domains in $\mathbb \{C\}^n$ and $f: \Omega _1 \rightarrow \Omega _2$ an isometry for the Kobayashi or Carathéodory metrics. Suppose that $f$ extends as a $C^1$ map to $ \bar\{\Omega \}_1$. We then prove that $f|_\{\partial \Omega _1\}: \partial \Omega _1 \rightarrow \partial \Omega _2$ is a CR or anti-CR diffeomorphism. It follows that $\Omega _1$ and $\Omega _2$ must be biholomorphic or anti-biholomorphic.},
author = {Seshadri, Harish},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {393-417},
publisher = {Scuola Normale Superiore, Pisa},
title = {On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains},
url = {http://eudml.org/doc/240414},
volume = {5},
year = {2006},
}

TY - JOUR
AU - Seshadri, Harish
TI - On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 3
SP - 393
EP - 417
AB - Let $\Omega _1$ and $\Omega _2$ be $\rm strongly \ pseudoconvex $ domains in $\mathbb {C}^n$ and $f: \Omega _1 \rightarrow \Omega _2$ an isometry for the Kobayashi or Carathéodory metrics. Suppose that $f$ extends as a $C^1$ map to $ \bar{\Omega }_1$. We then prove that $f|_{\partial \Omega _1}: \partial \Omega _1 \rightarrow \partial \Omega _2$ is a CR or anti-CR diffeomorphism. It follows that $\Omega _1$ and $\Omega _2$ must be biholomorphic or anti-biholomorphic.
LA - eng
UR - http://eudml.org/doc/240414
ER -

References

top
  1. [1] Z. M. Balogh and M. Bonk, Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv. 75 (2000), 504–533. Zbl0986.32012MR1793800
  2. [2] Z. M. Balogh and M. Bonk, Pseudoconvexity and Gromov hyperbolicity, C. R. Acad. Sci. Paris Sèr. I Math. 328(1999), 597–602. Zbl0940.32007MR1679982
  3. [3] F. Berteloot, Attraction des disques analytiques et continuitè höldérienne d’applications holomorphes propres, In: “Topics in Complex Analysis”(Warsaw, 1992), Banach Center Publ., Vol. 31, Polish Acad. Sci., Warsaw, 1995. Zbl0831.32012MR1341379
  4. [4] J. Bland, T. Duchamp and M. Kalka, On the automorphism group of strictly convex domains in n , In: “Complex Differential Geometry and Nonlinear Differential Equations” (Brunswick, maine, 1984), Comtemp. Math. Vol. 49, 1986, 19–30. Zbl0589.32050MR833801
  5. [5] S. Y. Cheng and S. T. Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), 507–544. Zbl0506.53031MR575736
  6. [6] K. Diederich and S. Pinchuk, Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J. 44 (1995), 1089–1125. Zbl0857.32015MR1386762
  7. [7] K. Diederich and S. Webster, A reflection principle for degenerate real hypersurfaces, Duke Math. J. 47 (1980), 835–843. Zbl0451.32008MR596117
  8. [8] F. Forstneric, An elementary proof of Fefferman’s theorem, Expo. Math. 10 (1992), 135–149. Zbl0759.32018MR1164529
  9. [9] H. Gaussier, K-T. Kim and S. G. Krantz, A note on the Wong-Rosay theorem in complex manifolds, Complex Variables Theory Appl. 47 (2002), 761–768. Zbl1044.32019MR1925173
  10. [10] I. Graham, Boundary behavior of the Carathèodory and Kobayashi metrics on strongly pseudoconvex domains in n with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219–240. Zbl0305.32011MR372252
  11. [11] I. Graham, Holomorphic mappings into strictly convex domains which are Kobayashi isometries at one point, Proc. Amer. Math. Soc. 105 (1989), 917–921. Zbl0709.32016MR961406
  12. [12] R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the ¯ equation, and stability of the Bergman kernel, Adv. Math. 43 (1982), 1–86. Zbl0504.32016MR644667
  13. [13] R. E. Greene and S. G. Krantz, Stability of the Carathèodory and Kobayashi metrics and applications to biholomorphic mappings, In: “Complex Analysis of Several Variables (Madison, Wis., 1982), 77–93, Proc. Sympos. Pure Math. 41, Amer. Math. Soc., Providence, RI, 1984. Zbl0533.32011MR740874
  14. [14] S. Kobayashi, Intrinsic metrics on complex manifolds, Bull. Amer. Math. Soc. 73 (1967), 347–349. Zbl0158.33104MR210152
  15. [15] L. D. Kay, On the Kobayashi-Royden metric for ellipsoids, Math. Ann. 289 (1991), 55–72. Zbl0699.32012MR1087235
  16. [16] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427–474. Zbl0492.32025MR660145
  17. [17] D. Ma, On iterates of holomorphic maps, Math. Z. 207 (1991), 417–428. Zbl0712.32018MR1115174
  18. [18] S. B. Myers and N. E. Steenrod, The group of isometries of a Riemannian manifold, Ann. Math. 40 (1939), 400–416. Zbl0021.06303MR1503467
  19. [19] L. Nirenberg, S. Webster and P. Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math. 33 (1980), 305–338. Zbl0436.32018MR562738
  20. [20] G. Patrizio, On holomorphic maps between domains in n , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986), 267–279. Zbl0611.32022MR876125
  21. [21] S. I. Pinchuk, A boundary uniqueness theorem for holomorphic functions of several complex variables, Mat. Zametki 15 (1974), 205–212. Zbl0292.32002MR350065
  22. [22] S. I. Pinchuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 644–649. Zbl0303.32016
  23. [23] S. I. Pinchuk, Holomorphic inequivalence of certain classes of domains in n , Mat. Sb. (N.S.) 111(153) (1980), 67–94. Zbl0442.32005MR560464
  24. [24] S. I. Pinchuk and S. V. Khasanov, Asymptotically holomorphic functions and their applications, Math. USSR-Sb. 62 (1992), 541–550. Zbl0663.32006MR933702
  25. [25] S. I. Pinchuk, The scaling method and holomorphic mappings In: “Several Complex Variables and Complex Geometry”, Part 1 (Santa Cruz, CA, 1989), 151–161, Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI, 1991. Zbl0744.32013MR1128522
  26. [26] J-P. Rosay, Sur une caractèrisation de la boule parmi les domaines de n par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble), 29 (1979), 91–97. Zbl0402.32001MR558590
  27. [27] K. Verma, Boundary regularity of correspondences in 2 , Math. Z. 231 (1999), 253–299. Zbl0939.32014MR1703349
  28. [28] E. Vesentini, Complex geodesics and holomorphic maps, In: Symposia Mathematica”, Vol. XXVI, Rome, 1980, 211–230, Academic Press, London-New York, 1982. Zbl0506.32008MR663034
  29. [29] J. P. Vigué, Caractérisation des automorphismes analytiques d’un domaine convexe borné, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 101–104. Zbl0589.32042
  30. [30] S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26–28. Zbl0626.32019MR477138
  31. [31] B. Wong, Characterization of the unit ball in n by its automorphism group, Invent. Math. 41 (1977), 253–257. Zbl0385.32016MR492401
  32. [32] J. Y. Yu, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), 587–614. Zbl0814.32006MR1276938

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.