On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze (2006)
- Volume: 5, Issue: 3, page 393-417
- ISSN: 0391-173X
Access Full Article
topAbstract
topHow to cite
topSeshadri, Harish. "On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains." Annali della Scuola Normale Superiore di Pisa - Classe di Scienze 5.3 (2006): 393-417. <http://eudml.org/doc/240414>.
@article{Seshadri2006,
abstract = {Let $\Omega _1$ and $\Omega _2$ be $\rm strongly \ pseudoconvex $ domains in $\mathbb \{C\}^n$ and $f: \Omega _1 \rightarrow \Omega _2$ an isometry for the Kobayashi or Carathéodory metrics. Suppose that $f$ extends as a $C^1$ map to $ \bar\{\Omega \}_1$. We then prove that $f|_\{\partial \Omega _1\}: \partial \Omega _1 \rightarrow \partial \Omega _2$ is a CR or anti-CR diffeomorphism. It follows that $\Omega _1$ and $\Omega _2$ must be biholomorphic or anti-biholomorphic.},
author = {Seshadri, Harish},
journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
language = {eng},
number = {3},
pages = {393-417},
publisher = {Scuola Normale Superiore, Pisa},
title = {On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains},
url = {http://eudml.org/doc/240414},
volume = {5},
year = {2006},
}
TY - JOUR
AU - Seshadri, Harish
TI - On isometries of the carathéodory and Kobayashi metrics on strongly pseudoconvex domains
JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY - 2006
PB - Scuola Normale Superiore, Pisa
VL - 5
IS - 3
SP - 393
EP - 417
AB - Let $\Omega _1$ and $\Omega _2$ be $\rm strongly \ pseudoconvex $ domains in $\mathbb {C}^n$ and $f: \Omega _1 \rightarrow \Omega _2$ an isometry for the Kobayashi or Carathéodory metrics. Suppose that $f$ extends as a $C^1$ map to $ \bar{\Omega }_1$. We then prove that $f|_{\partial \Omega _1}: \partial \Omega _1 \rightarrow \partial \Omega _2$ is a CR or anti-CR diffeomorphism. It follows that $\Omega _1$ and $\Omega _2$ must be biholomorphic or anti-biholomorphic.
LA - eng
UR - http://eudml.org/doc/240414
ER -
References
top- [1] Z. M. Balogh and M. Bonk, Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains, Comment. Math. Helv. 75 (2000), 504–533. Zbl0986.32012MR1793800
- [2] Z. M. Balogh and M. Bonk, Pseudoconvexity and Gromov hyperbolicity, C. R. Acad. Sci. Paris Sèr. I Math. 328(1999), 597–602. Zbl0940.32007MR1679982
- [3] F. Berteloot, Attraction des disques analytiques et continuitè höldérienne d’applications holomorphes propres, In: “Topics in Complex Analysis”(Warsaw, 1992), Banach Center Publ., Vol. 31, Polish Acad. Sci., Warsaw, 1995. Zbl0831.32012MR1341379
- [4] J. Bland, T. Duchamp and M. Kalka, On the automorphism group of strictly convex domains in , In: “Complex Differential Geometry and Nonlinear Differential Equations” (Brunswick, maine, 1984), Comtemp. Math. Vol. 49, 1986, 19–30. Zbl0589.32050MR833801
- [5] S. Y. Cheng and S. T. Yau, On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation, Comm. Pure Appl. Math. 33 (1980), 507–544. Zbl0506.53031MR575736
- [6] K. Diederich and S. Pinchuk, Proper holomorphic maps in dimension 2 extend, Indiana Univ. Math. J. 44 (1995), 1089–1125. Zbl0857.32015MR1386762
- [7] K. Diederich and S. Webster, A reflection principle for degenerate real hypersurfaces, Duke Math. J. 47 (1980), 835–843. Zbl0451.32008MR596117
- [8] F. Forstneric, An elementary proof of Fefferman’s theorem, Expo. Math. 10 (1992), 135–149. Zbl0759.32018MR1164529
- [9] H. Gaussier, K-T. Kim and S. G. Krantz, A note on the Wong-Rosay theorem in complex manifolds, Complex Variables Theory Appl. 47 (2002), 761–768. Zbl1044.32019MR1925173
- [10] I. Graham, Boundary behavior of the Carathèodory and Kobayashi metrics on strongly pseudoconvex domains in with smooth boundary, Trans. Amer. Math. Soc. 207 (1975), 219–240. Zbl0305.32011MR372252
- [11] I. Graham, Holomorphic mappings into strictly convex domains which are Kobayashi isometries at one point, Proc. Amer. Math. Soc. 105 (1989), 917–921. Zbl0709.32016MR961406
- [12] R. E. Greene and S. G. Krantz, Deformation of complex structures, estimates for the equation, and stability of the Bergman kernel, Adv. Math. 43 (1982), 1–86. Zbl0504.32016MR644667
- [13] R. E. Greene and S. G. Krantz, Stability of the Carathèodory and Kobayashi metrics and applications to biholomorphic mappings, In: “Complex Analysis of Several Variables (Madison, Wis., 1982), 77–93, Proc. Sympos. Pure Math. 41, Amer. Math. Soc., Providence, RI, 1984. Zbl0533.32011MR740874
- [14] S. Kobayashi, Intrinsic metrics on complex manifolds, Bull. Amer. Math. Soc. 73 (1967), 347–349. Zbl0158.33104MR210152
- [15] L. D. Kay, On the Kobayashi-Royden metric for ellipsoids, Math. Ann. 289 (1991), 55–72. Zbl0699.32012MR1087235
- [16] L. Lempert, La métrique de Kobayashi et la représentation des domaines sur la boule, Bull. Soc. Math. France 109 (1981), 427–474. Zbl0492.32025MR660145
- [17] D. Ma, On iterates of holomorphic maps, Math. Z. 207 (1991), 417–428. Zbl0712.32018MR1115174
- [18] S. B. Myers and N. E. Steenrod, The group of isometries of a Riemannian manifold, Ann. Math. 40 (1939), 400–416. Zbl0021.06303MR1503467
- [19] L. Nirenberg, S. Webster and P. Yang, Local boundary regularity of holomorphic mappings, Comm. Pure Appl. Math. 33 (1980), 305–338. Zbl0436.32018MR562738
- [20] G. Patrizio, On holomorphic maps between domains in , Ann. Scuola Norm. Sup. Pisa Cl. Sci. 13 (1986), 267–279. Zbl0611.32022MR876125
- [21] S. I. Pinchuk, A boundary uniqueness theorem for holomorphic functions of several complex variables, Mat. Zametki 15 (1974), 205–212. Zbl0292.32002MR350065
- [22] S. I. Pinchuk, On proper holomorphic mappings of strictly pseudoconvex domains, Siberian Math. J. 15 (1974), 644–649. Zbl0303.32016
- [23] S. I. Pinchuk, Holomorphic inequivalence of certain classes of domains in , Mat. Sb. (N.S.) 111(153) (1980), 67–94. Zbl0442.32005MR560464
- [24] S. I. Pinchuk and S. V. Khasanov, Asymptotically holomorphic functions and their applications, Math. USSR-Sb. 62 (1992), 541–550. Zbl0663.32006MR933702
- [25] S. I. Pinchuk, The scaling method and holomorphic mappings In: “Several Complex Variables and Complex Geometry”, Part 1 (Santa Cruz, CA, 1989), 151–161, Proc. Sympos. Pure Math., 52, Part 1, Amer. Math. Soc., Providence, RI, 1991. Zbl0744.32013MR1128522
- [26] J-P. Rosay, Sur une caractèrisation de la boule parmi les domaines de par son groupe d’automorphismes, Ann. Inst. Fourier (Grenoble), 29 (1979), 91–97. Zbl0402.32001MR558590
- [27] K. Verma, Boundary regularity of correspondences in , Math. Z. 231 (1999), 253–299. Zbl0939.32014MR1703349
- [28] E. Vesentini, Complex geodesics and holomorphic maps, In: Symposia Mathematica”, Vol. XXVI, Rome, 1980, 211–230, Academic Press, London-New York, 1982. Zbl0506.32008MR663034
- [29] J. P. Vigué, Caractérisation des automorphismes analytiques d’un domaine convexe borné, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984), 101–104. Zbl0589.32042
- [30] S. Webster, On the reflection principle in several complex variables, Proc. Amer. Math. Soc. 71 (1978), 26–28. Zbl0626.32019MR477138
- [31] B. Wong, Characterization of the unit ball in by its automorphism group, Invent. Math. 41 (1977), 253–257. Zbl0385.32016MR492401
- [32] J. Y. Yu, Weighted boundary limits of the generalized Kobayashi-Royden metrics on weakly pseudoconvex domains, Trans. Amer. Math. Soc. 347 (1995), 587–614. Zbl0814.32006MR1276938
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.