La métrique de Kobayashi et la représentation des domaines sur la boule

Laszlo Lempert

Bulletin de la Société Mathématique de France (1981)

  • Volume: 109, page 427-474
  • ISSN: 0037-9484

How to cite


Lempert, Laszlo. "La métrique de Kobayashi et la représentation des domaines sur la boule." Bulletin de la Société Mathématique de France 109 (1981): 427-474. <>.

author = {Lempert, Laszlo},
journal = {Bulletin de la Société Mathématique de France},
keywords = {convex domain; Kobayashi metric; Monge-Ampere equation},
language = {fre},
pages = {427-474},
publisher = {Société mathématique de France},
title = {La métrique de Kobayashi et la représentation des domaines sur la boule},
url = {},
volume = {109},
year = {1981},

AU - Lempert, Laszlo
TI - La métrique de Kobayashi et la représentation des domaines sur la boule
JO - Bulletin de la Société Mathématique de France
PY - 1981
PB - Société mathématique de France
VL - 109
SP - 427
EP - 474
LA - fre
KW - convex domain; Kobayashi metric; Monge-Ampere equation
UR -
ER -


  1. [1] BEDFORD (E.) and KALKA (M.). — Foliations and complex Monge-Ampère equations, Comm. on Pure and Appl. Math., vol. XXX, 1977, p. 543-571. Zbl0351.35063MR58 #1253
  2. [2] BEDFORD (E.) and TAYLOR (B. A.). — The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., vol. 37, 1976, p. 1-44. Zbl0315.31007MR56 #3351
  3. [3] BELL (S.) and LIGOCKA (E.). — A simplification and extension of Fefferman's theorem on biholomorphic mappings (Preprint). Zbl0411.32010
  4. [4] BISHOP (E.). — Differentiable manifolds in complex Euclidian space, Duke Math. J., vol. 32, 1965, p. 1-22. Zbl0154.08501MR34 #369
  5. [5] FEFFERMAN (C.). — The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., vol. 26., 1974, p. 1-65. Zbl0289.32012MR50 #2562
  6. [6] GOLUZIN (G. M.). — Théorie géométrique des fonctions d'une variable complexe. Moscou-Léningrad, Gosudarstvennoe Izdatelstvo Techniko-Teoretičeskoi Literaturi 1952 (en russe). 
  7. [7] HARVEY (F. R.) and WELLS (R. O.) Jr. — Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann., vol. 197, 1972, p. 287-318. Zbl0246.32019
  8. [8] HENKIN (G. M.). — An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Dokl. Akad. Nauk S.S.S.R., vol. 210, 1973, p. 1026-1029 ; Soviet Math. Dokl., vol. 14, 1973, p. 858-862. Zbl0288.32015MR48 #6467
  9. [9] LEWY (H.). — On the boundary behaviour of holomorphic mappings, Att. Acad. Naz. dei Lincei, n° 35, 1977. 
  10. [10] NARUKI (I.). — On the extendibility of isomorphisms of Cartan connections and biholomorphic mappings of bounded domains, Tôhoku Math. J., vol. 28, 1976, p. 117-122. Zbl0346.32003MR53 #5946
  11. [11] PINCUK (S. I.). — On the analytic continuation of holomorphic mappings, Math. Sb., vol. 27, 1975, p. 375-392. Zbl0366.32010MR52 #14371
  12. [12] WEBSTER (S. M.). — On the reflection principale in several complex variables, Proc. Amer. Math. Soc., vol. 71, 1978, n° 1, p. 26-28. Zbl0626.32019MR57 #16681

Citations in EuDML Documents

  1. Filippo Bracci, Commuting holomorphic maps in strongly convex domains
  2. Bracci Filippo, Punti fissi di mappe olomorfe
  3. Siegfried Momm, Plurisubharmonic saddles
  4. Włodzimierz Zwonek, Carathéodory balls in convex complex ellipsoids
  5. Włodzimierz Zwonek, Effective formulas for complex geodesics in generalized pseudoellipsoids with applications
  6. Włodzimierz Zwonek, On symmetry of the pluricomplex Green function for ellipsoids
  7. John Bland, Tom Duchamp, Contact geometry and CR-structures on spheres
  8. Do Duc Thai, The fixed points of holomorphic maps on a convex domain
  9. J. Bland, Ian Graham, On the Hausdorff measures associated to the Carathéodory and Kobayashi metrics
  10. Marco Abate, Boundary behaviour of invariant distances and complex geodesics

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.