La métrique de Kobayashi et la représentation des domaines sur la boule
Bulletin de la Société Mathématique de France (1981)
- Volume: 109, page 427-474
- ISSN: 0037-9484
Access Full Article
topHow to cite
topLempert, Laszlo. "La métrique de Kobayashi et la représentation des domaines sur la boule." Bulletin de la Société Mathématique de France 109 (1981): 427-474. <http://eudml.org/doc/87405>.
@article{Lempert1981,
author = {Lempert, Laszlo},
journal = {Bulletin de la Société Mathématique de France},
keywords = {convex domain; Kobayashi metric; Monge-Ampere equation},
language = {fre},
pages = {427-474},
publisher = {Société mathématique de France},
title = {La métrique de Kobayashi et la représentation des domaines sur la boule},
url = {http://eudml.org/doc/87405},
volume = {109},
year = {1981},
}
TY - JOUR
AU - Lempert, Laszlo
TI - La métrique de Kobayashi et la représentation des domaines sur la boule
JO - Bulletin de la Société Mathématique de France
PY - 1981
PB - Société mathématique de France
VL - 109
SP - 427
EP - 474
LA - fre
KW - convex domain; Kobayashi metric; Monge-Ampere equation
UR - http://eudml.org/doc/87405
ER -
References
top- [1] BEDFORD (E.) and KALKA (M.). — Foliations and complex Monge-Ampère equations, Comm. on Pure and Appl. Math., vol. XXX, 1977, p. 543-571. Zbl0351.35063MR58 #1253
- [2] BEDFORD (E.) and TAYLOR (B. A.). — The Dirichlet problem for a complex Monge-Ampère equation, Invent. Math., vol. 37, 1976, p. 1-44. Zbl0315.31007MR56 #3351
- [3] BELL (S.) and LIGOCKA (E.). — A simplification and extension of Fefferman's theorem on biholomorphic mappings (Preprint). Zbl0411.32010
- [4] BISHOP (E.). — Differentiable manifolds in complex Euclidian space, Duke Math. J., vol. 32, 1965, p. 1-22. Zbl0154.08501MR34 #369
- [5] FEFFERMAN (C.). — The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math., vol. 26., 1974, p. 1-65. Zbl0289.32012MR50 #2562
- [6] GOLUZIN (G. M.). — Théorie géométrique des fonctions d'une variable complexe. Moscou-Léningrad, Gosudarstvennoe Izdatelstvo Techniko-Teoretičeskoi Literaturi 1952 (en russe).
- [7] HARVEY (F. R.) and WELLS (R. O.) Jr. — Holomorphic approximation and hyperfunction theory on a C1 totally real submanifold of a complex manifold, Math. Ann., vol. 197, 1972, p. 287-318. Zbl0246.32019
- [8] HENKIN (G. M.). — An analytic polyhedron is not holomorphically equivalent to a strictly pseudoconvex domain, Dokl. Akad. Nauk S.S.S.R., vol. 210, 1973, p. 1026-1029 ; Soviet Math. Dokl., vol. 14, 1973, p. 858-862. Zbl0288.32015MR48 #6467
- [9] LEWY (H.). — On the boundary behaviour of holomorphic mappings, Att. Acad. Naz. dei Lincei, n° 35, 1977.
- [10] NARUKI (I.). — On the extendibility of isomorphisms of Cartan connections and biholomorphic mappings of bounded domains, Tôhoku Math. J., vol. 28, 1976, p. 117-122. Zbl0346.32003MR53 #5946
- [11] PINCUK (S. I.). — On the analytic continuation of holomorphic mappings, Math. Sb., vol. 27, 1975, p. 375-392. Zbl0366.32010MR52 #14371
- [12] WEBSTER (S. M.). — On the reflection principale in several complex variables, Proc. Amer. Math. Soc., vol. 71, 1978, n° 1, p. 26-28. Zbl0626.32019MR57 #16681
Citations in EuDML Documents
top- Filippo Bracci, Commuting holomorphic maps in strongly convex domains
- Bracci Filippo, Punti fissi di mappe olomorfe
- Siegfried Momm, Plurisubharmonic saddles
- Włodzimierz Zwonek, Carathéodory balls in convex complex ellipsoids
- Włodzimierz Zwonek, Effective formulas for complex geodesics in generalized pseudoellipsoids with applications
- Włodzimierz Zwonek, On symmetry of the pluricomplex Green function for ellipsoids
- John Bland, Tom Duchamp, Contact geometry and CR-structures on spheres
- Do Duc Thai, The fixed points of holomorphic maps on a convex domain
- J. Bland, Ian Graham, On the Hausdorff measures associated to the Carathéodory and Kobayashi metrics
- Marco Abate, Boundary behaviour of invariant distances and complex geodesics
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.