Between Paouris concentration inequality and variance conjecture

B. Fleury

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 2, page 299-312
  • ISSN: 0246-0203

Abstract

top
We prove an almost isometric reverse Hölder inequality for the euclidean norm on an isotropic generalized Orlicz ball which interpolates Paouris concentration inequality and variance conjecture. We study in this direction the case of isotropic convex bodies with an unconditional basis and the case of general convex bodies.

How to cite

top

Fleury, B.. "Between Paouris concentration inequality and variance conjecture." Annales de l'I.H.P. Probabilités et statistiques 46.2 (2010): 299-312. <http://eudml.org/doc/240439>.

@article{Fleury2010,
abstract = {We prove an almost isometric reverse Hölder inequality for the euclidean norm on an isotropic generalized Orlicz ball which interpolates Paouris concentration inequality and variance conjecture. We study in this direction the case of isotropic convex bodies with an unconditional basis and the case of general convex bodies.},
author = {Fleury, B.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {concentration inequalities; convex bodies},
language = {eng},
number = {2},
pages = {299-312},
publisher = {Gauthier-Villars},
title = {Between Paouris concentration inequality and variance conjecture},
url = {http://eudml.org/doc/240439},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Fleury, B.
TI - Between Paouris concentration inequality and variance conjecture
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 2
SP - 299
EP - 312
AB - We prove an almost isometric reverse Hölder inequality for the euclidean norm on an isotropic generalized Orlicz ball which interpolates Paouris concentration inequality and variance conjecture. We study in this direction the case of isotropic convex bodies with an unconditional basis and the case of general convex bodies.
LA - eng
KW - concentration inequalities; convex bodies
UR - http://eudml.org/doc/240439
ER -

References

top
  1. [1] M. Anttila, K. Ball and I. Perissinaki. The central limit problem for convex bodies. Trans. Amer. Math. Soc. 355 (2003) 4723–4735. Zbl1033.52003MR1997580
  2. [2] S. G. Bobkov. Remarks on the growth of Lp-norms of polynomials. In Geometric Aspects of Functionnal Analysis 27–35. Lecture Notes in Math. 1745. Springer, Berlin, 2000. Zbl0976.46005MR1796711
  3. [3] S. G. Bobkov. Spectral gap and concentration for some spherically symmetric probability measures. In Geometric Aspects of Functional Analysis – Israel Seminar 37–43. Lecture Notes in Math. 1807. Springer, Berlin, 2003. Zbl1052.60003MR2083386
  4. [4] S. G. Bobkov and A. Koldobsky. On the central limit property of convex convex bodies. In Geometric Aspects of Functional Analysis – Israel Seminar 44–52. Lecture Notes in Math. 1807. Springer, Berlin, 2003. Zbl1039.52003MR2083387
  5. [5] D. Cordero-Erausquin, M. Fradelizi and B. Maurey. The (B) conjecture for the Gaussian measure of dilates of symmetric convex sets and related problems. J. Funct. Anal. 214 (2004), 410–427. Zbl1073.60042MR2083308
  6. [6] B. Fleury, O. Guédon and G. Paouris. A stability result for mean width of Lp-centroid bodies. Adv. Math. 214 (2007) 865–877. Zbl1132.52012MR2349721
  7. [7] R. J. Gardner. The Brunn–Minkowski inequality. Bull. Amer. Math. Soc. 39 (2002) 355–405. Zbl1019.26008MR1898210
  8. [8] R. Latala and J. O. Wojtaszczyk. On the infimum convolution inequality. Available at arXiv: 0801.4036. Zbl1161.26010MR2449135
  9. [9] B. Klartag. Power-law estimates for the central limit theorem for convex sets. J. Funct. Anal. 245 (2007) 284–310. Zbl1140.52004MR2311626
  10. [10] B. Klartag. A Berry–Esseen type inequality for convex bodies with an unconditional basis. Probab. Theory Related Fields. 45 (2009) 1–33. Zbl1171.60322MR2520120
  11. [11] R. Kannan, L. Lovász and M. Simonovits. Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995) 541–559. Zbl0824.52012MR1318794
  12. [12] E. Milman. On the role of convexity in isoperimetry, spectral-gap and concentration. Available at arXiv: 0712.4092. Zbl1181.52008MR2507637
  13. [13] V. D. Milman and G. Schechtman. Asymptotic Theory of Finite Dimensional Normed Spaces. Lecture Notes in Math. 1200. Springer, Berlin, 1986. Zbl0606.46013MR856576
  14. [14] G. Paouris. Concentration of mass in convex bodies. Geom. Funct. Anal. 16 (2006) 1021–1049. Zbl1114.52004MR2276533
  15. [15] M. Pilipczuk and J. O. Wojtaszczyk. The negative association property for the absolute values of random variables equidistributed on a generalized Orlicz ball. Positivity 12 (2008) 421–474. Zbl1155.60006MR2421144
  16. [16] S. Sodin. An isoperimetric inequality on the lp balls. Ann. Inst. H. Poincaré Probab. Statist. 44 (2008) 362–373. Zbl1181.60025MR2446328
  17. [17] J. O. Wojtaszczyk. The square negative correlation property for generalized Orlicz balls. In Geometric Aspects of Functional Analysis – Israel Seminar 305–313. Lecture Notes in Math. 1910. Springer, Berlin, 2007. Zbl1137.60007MR2349615

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.