An isoperimetric inequality on the ℓp balls

Sasha Sodin

Annales de l'I.H.P. Probabilités et statistiques (2008)

  • Volume: 44, Issue: 2, page 362-373
  • ISSN: 0246-0203

Abstract

top
The normalised volume measure on the ℓnp unit ball (1≤p≤2) satisfies the following isoperimetric inequality: the boundary measure of a set of measure a is at least cn1/pãlog1−1/p(1/ã), where ã=min(a, 1−a).

How to cite

top

Sodin, Sasha. "An isoperimetric inequality on the ℓp balls." Annales de l'I.H.P. Probabilités et statistiques 44.2 (2008): 362-373. <http://eudml.org/doc/77974>.

@article{Sodin2008,
abstract = {The normalised volume measure on the ℓnp unit ball (1≤p≤2) satisfies the following isoperimetric inequality: the boundary measure of a set of measure a is at least cn1/pãlog1−1/p(1/ã), where ã=min(a, 1−a).},
author = {Sodin, Sasha},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {isoperimetric inequalities; volume measure},
language = {eng},
number = {2},
pages = {362-373},
publisher = {Gauthier-Villars},
title = {An isoperimetric inequality on the ℓp balls},
url = {http://eudml.org/doc/77974},
volume = {44},
year = {2008},
}

TY - JOUR
AU - Sodin, Sasha
TI - An isoperimetric inequality on the ℓp balls
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2008
PB - Gauthier-Villars
VL - 44
IS - 2
SP - 362
EP - 373
AB - The normalised volume measure on the ℓnp unit ball (1≤p≤2) satisfies the following isoperimetric inequality: the boundary measure of a set of measure a is at least cn1/pãlog1−1/p(1/ã), where ã=min(a, 1−a).
LA - eng
KW - isoperimetric inequalities; volume measure
UR - http://eudml.org/doc/77974
ER -

References

top
  1. [1] F. J. Almgren. Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints. Mem. Amer. Math. Soc. 4 (1976) 165. Zbl0327.49043MR420406
  2. [2] F. Barthe. Log-concave and spherical models in isoperimetry. Geom. Funct. Anal. 12 (2002) 32–55. Zbl0999.60017MR1904555
  3. [3] F. Barthe, P. Cattiaux and C. Roberto. Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Math. Iberoamericana 22 (2005) 993–1067. Zbl1118.26014MR2320410
  4. [4] F. Barthe, O. Guédon, S. Mendelson and A. Naor. A probabilistic approach to the geometry of the ℓnp-ball. Ann. Probab. 33 (2005) 480–513. Zbl1071.60010MR2123199
  5. [5] F. Barthe and C. Roberto. Sobolev inequalities for probability measures on the real line. Studia Math. 159 (2003) 481–497. Zbl1072.60008MR2052235
  6. [6] S. G. Bobkov. Isoperimetric and analytic inequalities for log-concave probability measures. Ann. Probab. 27 (1999) 1903–1921. Zbl0964.60013MR1742893
  7. [7] S. G. Bobkov. Spectral gap and concentration for some spherically symmetric probability measures. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 37–43. Lecture Notes in Math. 1807. Springer, Berlin, 2003. Zbl1052.60003MR2083386
  8. [8] S. G. Bobkov. An isoperimetric inequality on the discrete cube, and an elementary proof of the isoperimetric inequality in Gauss space. Ann. Probab. 25 (1997) 206–214. Zbl0883.60031MR1428506
  9. [9] S. G. Bobkov. On isoperimetric constants for log-concave probability distributions. Lecture Notes in Math. 1910 (2007) 81–88. Zbl1132.60301MR2347041
  10. [10] S. Bobkov. Extremal properties of half-spaces for log-concave distributions. Ann. Probab. 24 (1996) 35–48. Zbl0859.60048MR1387625
  11. [11] S. G. Bobkov and C. Houdré. Isoperimetric constants for product probability measures. Ann. Probab. 25 (1997) 184–205. Zbl0878.60013MR1428505
  12. [12] S. G. Bobkov and B. Zegarlinski. Entropy bounds and isoperimetry. Mem. Amer. Math. Soc. 176 (2005) 829. Zbl1161.46300MR2146071
  13. [13] J. Bokowski and E. Sperner. Zerlegung konvexer Körper durch minimale Trennflächen. J. Reine Angew. Math. 311/312 (1979) 80–100. Zbl0415.52008MR549959
  14. [14] C. Borell. The Brunn–Minkowski inequality in Gauss space. Invent. Math. 30 (1975) 207–216. Zbl0292.60004MR399402
  15. [15] J. Bourgain. On the distribution of polynomials on high-dimensional convex sets. Geometric aspects of functional analysis (Notes of GAFA Seminar) 127–137. Lecture Notes in Math. 1469. Springer, Berlin, 1991. Zbl0773.46013MR1122617
  16. [16] Y. D. Burago and V. G. Maz’ja. Certain questions of potential theory and function theory for regions with irregular boundaries. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 3 (1967) 152. (English translation: Potential theory and function theory for irregular regions. Seminars in Mathematics. V. A. Steklov Mathematical Institute, Leningrad, Vol. 3, Consultants Bureau, New York, 1969) Zbl0177.37502MR227447
  17. [17] H. Federer and W. H. Fleming. Normal and integral currents. Ann. of Math. (2) 72 (1960) 458–520. Zbl0187.31301MR123260
  18. [18] B. Klartag. On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. 16 (2006) 1274–1290. Zbl1113.52014MR2276540
  19. [19] R. Kannan, L. Lovász and M. Simonovits. Isoperimetric problems for convex bodies and a localization lemma. Discrete Comput. Geom. 13 (1995) 541–559. Zbl0824.52012MR1318794
  20. [20] M. Ledoux. Spectral gap, logarithmic Sobolev constant, and geometric bounds. In Surveys in Differential Geometry. Vol. IX 219–240. Int. Press, Somerville, MA, 2004. Zbl1061.58028MR2195409
  21. [21] R. Latała and K. Oleszkiewicz. Between Sobolev and Poincaré. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 147–168. Lecture Notes in Math. 1745. Springer, Berlin, 2000. Zbl0986.60017MR1796718
  22. [22] V. G. Maz’ja. Classes of domains and imbedding theorems for function spaces. Dokl. Akad. Nauk SSSR 133 (1960) 527–530. (Russian). Translated as Soviet Math. Dokl. 1 (1960) 882–885. Zbl0114.31001MR126152
  23. [23] G. Paouris. Concentration of mass on isotropic convex bodies. C. R. Math. Acad. Sci. Paris 342 (2006) 179–182. Zbl1087.52002MR2198189
  24. [24] G. Schechtman and J. Zinn. On the volume of the intersection of two Lnp balls. Proc. Amer. Math. Soc. 110 (1990) 217–224. Zbl0704.60017MR1015684
  25. [25] G. Schechtman and J. Zinn. Concentration on the ℓnp ball. Geometric Aspects of Functional Analysis (Notes of GAFA Seminar) 245–256. Lecture Notes in Math. 1745. Springer, Berlin, 2000. Zbl0971.46009MR1796723
  26. [26] V. N. Sudakov and B. S. Cirel’son. Extremal properties of half-spaces for spherically invariant measures. Problems in the theory of probability distributions, II. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41 (1974) 14–24, 165. (Russian). Zbl0351.28015MR365680

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.