Notes on generalized ( σ , τ ) –derivation

Öznur Gölbaşi; Emine Koç

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 123, page 131-140
  • ISSN: 0041-8994

How to cite

top

Gölbaşi, Öznur, and Koç, Emine. "Notes on generalized $({\sigma } ,{\tau } )$–derivation." Rendiconti del Seminario Matematico della Università di Padova 123 (2010): 131-140. <http://eudml.org/doc/240502>.

@article{Gölbaşi2010,
author = {Gölbaşi, Öznur, Koç, Emine},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {prime rings; automorphisms; additive mappings; generalized derivations; Lie ideals},
language = {eng},
pages = {131-140},
publisher = {Seminario Matematico of the University of Padua},
title = {Notes on generalized $(\{\sigma \} ,\{\tau \} )$–derivation},
url = {http://eudml.org/doc/240502},
volume = {123},
year = {2010},
}

TY - JOUR
AU - Gölbaşi, Öznur
AU - Koç, Emine
TI - Notes on generalized $({\sigma } ,{\tau } )$–derivation
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 123
SP - 131
EP - 140
LA - eng
KW - prime rings; automorphisms; additive mappings; generalized derivations; Lie ideals
UR - http://eudml.org/doc/240502
ER -

References

top
  1. [1] N. Argaç - E. Albaş, Generalized derivations of prime rings, Algebra Coll., 11 (3) (2004), pp. 399--410. Zbl1074.16022MR2081197
  2. [2] M. Ashraf - N. Rehman - M. A. Quadri, On ( σ , τ ) -derivations in certain clases of rings, Radovi Math., 9 (2) (1999), pp. 187--192. Zbl0963.16031MR1790206
  3. [3] A. Asma - N. Rehman - A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Mathematica Hungarica, 101 (2003), pp. 79--82. Zbl1053.16025MR2011464
  4. [4] A. Asma - D. Kumar, Derivation which acts as a homomorphism or as an anti-homomorphism in prime ring, International Math. Forum, 2 (23) (2007), pp. 1105--1110. Zbl1146.16015MR2334023
  5. [5] H. E. Bell - W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30 (1) (1987), pp. 92--101. Zbl0614.16026MR879877
  6. [6] H. E. Bell - L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta math. Hungarica, 53 (1989), pp. 339--346. Zbl0705.16021MR1014917
  7. [7] Ö. Gölbaşi - N. Aydin, Some results on endomorphisms of prime ring which are ( σ , τ ) -derivation, East Asian Math. J., 18 (2) (2002), pp. 195--203. Zbl1030.16020
  8. [8] B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 (4) (1998), pp. 1147--1166. Zbl0899.16018MR1612208
  9. [9] H. Kandamar - K. Kaya, Lie ideals and ( σ , τ ) -derivation in prime rings, Hacettepe Bull. Natural Sci. and Engeneering, 21 (1992), pp. 29--33. Zbl0791.16027
  10. [10] N. Rehman, On commutativity of rings with generalized derivations, Math. J. Okayama Univ., 44 (2002), pp. 43--49. Zbl1030.16022MR1961123
  11. [11] N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glasnik Mathematicki, 39 (59) (2004), pp. 27--30. Zbl1047.16019MR2055383
  12. [12] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), pp. 1093--1100. Zbl0082.03003MR95863

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.