# Notes on generalized $(\sigma ,\tau )$–derivation

Rendiconti del Seminario Matematico della Università di Padova (2010)

- Volume: 123, page 131-140
- ISSN: 0041-8994

## Access Full Article

top## How to cite

topGölbaşi, Öznur, and Koç, Emine. "Notes on generalized $({\sigma } ,{\tau } )$–derivation." Rendiconti del Seminario Matematico della Università di Padova 123 (2010): 131-140. <http://eudml.org/doc/240502>.

@article{Gölbaşi2010,

author = {Gölbaşi, Öznur, Koç, Emine},

journal = {Rendiconti del Seminario Matematico della Università di Padova},

keywords = {prime rings; automorphisms; additive mappings; generalized derivations; Lie ideals},

language = {eng},

pages = {131-140},

publisher = {Seminario Matematico of the University of Padua},

title = {Notes on generalized $(\{\sigma \} ,\{\tau \} )$–derivation},

url = {http://eudml.org/doc/240502},

volume = {123},

year = {2010},

}

TY - JOUR

AU - Gölbaşi, Öznur

AU - Koç, Emine

TI - Notes on generalized $({\sigma } ,{\tau } )$–derivation

JO - Rendiconti del Seminario Matematico della Università di Padova

PY - 2010

PB - Seminario Matematico of the University of Padua

VL - 123

SP - 131

EP - 140

LA - eng

KW - prime rings; automorphisms; additive mappings; generalized derivations; Lie ideals

UR - http://eudml.org/doc/240502

ER -

## References

top- [1] N. Argaç - E. Albaş, Generalized derivations of prime rings, Algebra Coll., 11 (3) (2004), pp. 399--410. Zbl1074.16022MR2081197
- [2] M. Ashraf - N. Rehman - M. A. Quadri, On $(\sigma ,\tau )$-derivations in certain clases of rings, Radovi Math., 9 (2) (1999), pp. 187--192. Zbl0963.16031MR1790206
- [3] A. Asma - N. Rehman - A. Shakir, On Lie ideals with derivations as homomorphisms and anti-homomorphisms, Acta Mathematica Hungarica, 101 (2003), pp. 79--82. Zbl1053.16025MR2011464
- [4] A. Asma - D. Kumar, Derivation which acts as a homomorphism or as an anti-homomorphism in prime ring, International Math. Forum, 2 (23) (2007), pp. 1105--1110. Zbl1146.16015MR2334023
- [5] H. E. Bell - W. S. Martindale, Centralizing mappings of semiprime rings, Canad. Math. Bull., 30 (1) (1987), pp. 92--101. Zbl0614.16026MR879877
- [6] H. E. Bell - L. C. Kappe, Rings in which derivations satisfy certain algebraic conditions, Acta math. Hungarica, 53 (1989), pp. 339--346. Zbl0705.16021MR1014917
- [7] Ö. Gölbaşi - N. Aydin, Some results on endomorphisms of prime ring which are $(\sigma ,\tau )$-derivation, East Asian Math. J., 18 (2) (2002), pp. 195--203. Zbl1030.16020
- [8] B. Hvala, Generalized derivations in rings, Comm. Algebra, 26 (4) (1998), pp. 1147--1166. Zbl0899.16018MR1612208
- [9] H. Kandamar - K. Kaya, Lie ideals and $(\sigma ,\tau )$-derivation in prime rings, Hacettepe Bull. Natural Sci. and Engeneering, 21 (1992), pp. 29--33. Zbl0791.16027
- [10] N. Rehman, On commutativity of rings with generalized derivations, Math. J. Okayama Univ., 44 (2002), pp. 43--49. Zbl1030.16022MR1961123
- [11] N. Rehman, On generalized derivations as homomorphisms and anti-homomorphisms, Glasnik Mathematicki, 39 (59) (2004), pp. 27--30. Zbl1047.16019MR2055383
- [12] E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc., 8 (1957), pp. 1093--1100. Zbl0082.03003MR95863

## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.