Rational components of Hilbert schemes

Paolo Lella; Margherita Roggero

Rendiconti del Seminario Matematico della Università di Padova (2011)

  • Volume: 126, page 11-45
  • ISSN: 0041-8994

How to cite

top

Lella, Paolo, and Roggero, Margherita. "Rational components of Hilbert schemes." Rendiconti del Seminario Matematico della Università di Padova 126 (2011): 11-45. <http://eudml.org/doc/240595>.

@article{Lella2011,
author = {Lella, Paolo, Roggero, Margherita},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Hilbert schemes; Gröbner bases; initial ideals},
language = {eng},
pages = {11-45},
publisher = {Seminario Matematico of the University of Padua},
title = {Rational components of Hilbert schemes},
url = {http://eudml.org/doc/240595},
volume = {126},
year = {2011},
}

TY - JOUR
AU - Lella, Paolo
AU - Roggero, Margherita
TI - Rational components of Hilbert schemes
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2011
PB - Seminario Matematico of the University of Padua
VL - 126
SP - 11
EP - 45
LA - eng
KW - Hilbert schemes; Gröbner bases; initial ideals
UR - http://eudml.org/doc/240595
ER -

References

top
  1. [1] D. Bayer, The division algorithm and the Hilbert schemes. Harvard University, 1982, Ph.D. Thesis. MR2632095
  2. [2] N. Bourbaki, Commutative algebra. Chapters 1–7. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1989. Translated from the French, Reprint of the 1972 edition. Zbl0673.00001MR979760
  3. [3] G. Carrà Ferro, Gröbner bases and Hilbert schemes. I. J. Symbolic Comput., 6 (2-3) (1988), pp. 219–230. Computational aspects of commutative algebra. Zbl0667.13009MR988414
  4. [4] D. Cox - J. Little - D. O'Shea, Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. Springer, New York, third edition, 2007. An introduction to computational algebraic geometry and commutative algebra. Zbl1118.13001MR2290010
  5. [5] D. Eisenbud, Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1995. With a view toward algebraic geometry. Zbl0819.13001MR1322960
  6. [6] D. Eisenbud - S. Goto, Linear free resolutions and minimal multiplicity. J. Algebra, 88 (1) (1984), pp. 89–133. Zbl0531.13015MR741934
  7. [7] P. Ellia, D’autres composantes non réduites de H i l b P 3 . Math. Ann., 277 (3) (1987), pp. 433–446. Zbl0635.14006MR891584
  8. [8] G. Ferrarese - M. Roggero, Homogeneous varieties for Hilbert schemes. Int. J. Algebra, 3 (9-12) (2009), pp. 547–557. Zbl1193.13001MR2545200
  9. [9] G. Gotzmann, The irreducible components of H i l b 4 n ( P 3 ) , 2008. Preprint. 
  10. [10] M. L. Green, Generic initial ideals. pp. 11–85. C.R.M., Bellaterra, 1996. Lectures given at Summer School on Commutative Algebra. Zbl0933.13002
  11. [11] M. Haiman - B. Sturmfels, Multigraded Hilbert schemes. J. Algebraic Geom., 13 (4) (2004, pp. 725–769. Zbl1072.14007MR2073194
  12. [12] A. Iarrobino, Reducibility of the families of 0 -dimensional schemes on a variety. Invent. Math., 15 (1972), pp. 72–77. Zbl0227.14006MR301010
  13. [13] A. A. Iarrobino, Punctual Hilbert schemes. Mem. Amer. Math. Soc., 10 (188) (1977), pp. viii+112. Zbl0355.14001MR485867
  14. [14] J. O. Kleppe, Nonreduced components of the Hilbert scheme of smooth space curves. In Space curves (Rocca di Papa, 1985), volume 1266 of Lecture Notes in Math. (Springer, Berlin, 1987), pp. 181–207. Zbl0631.14022MR908714
  15. [15] M. Kreuzer - L. Robbiano, Computational commutative algebra. 2. Springer-Verlag, Berlin, 2005. Zbl0956.13008MR2159476
  16. [16] F. L. Macaulay, Some properties of enumeration of modular forms system. Proc. London Math. Soc., 26 (1927), pp. 531–555. Zbl53.0104.01JFM53.0104.01
  17. [17] M. G. Marinari - L. Ramella, Some properties of Borel ideals. J. Pure Appl. Algebra, 139 (1-3) (1999), pp. 183–200. Effective methods in algebraic geometry (Saint-Malo, 1998). Zbl0929.13012MR1700543
  18. [18] D. Mumford, Further pathologies in algebraic geometry. Amer. J. Math., 84 (1962), pp. 642–648. Zbl0114.13106MR148670
  19. [19] R. Notari - M. L. Spreafico, A stratification of Hilbert schemes by initial ideals and applications. Manuscripta Math., 101 (4) (2000), pp. 429–448. Zbl0985.13006MR1759253
  20. [20] A. Reeves - M. Stillman, Smoothness of the lexicographic point. J. Algebraic Geom., 6 (2) (1997), pp. 235–246. Zbl0924.14004MR1489114
  21. [21] L. Robbiano, On Border Basis and Groebner Basis Schemes. Collect. Math., 60 (2009), pp. 11–25. Zbl1176.13004MR2490747
  22. [22] M. Roggero - L. Terracini, Ideals with an assigned initial ideal, Int. Math. Forum, 5 (53-56) (2010), pp. 2731–2750. Zbl1222.13017MR2733340
  23. [23] E. Sernesi, Deformations of algebraic schemes, volume 334 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 2006. Zbl1102.14001MR2247603
  24. [24] M. Sherman. A local version of Gotzmann's Persistence, 2007. Preprint. 
  25. [25] M. Sherman, On an extension of Galligo's theorem concerning the Borel-fixed points on the Hilbert scheme. J. Algebra, 318 (1) (2007), pp. 47–67. Zbl1140.13013MR2363124
  26. [26] I. Vainsencher - D. Avritzer, Compactifying the space of elliptic quartic curves. In Complex projective geometry (Trieste, 1989/Bergen, 1989), volume 179 of London Math. Soc. Lecture Note Ser., pp. 47–58. Cambridge Univ. Press, Cambridge, 1992. Zbl0774.14024MR1201374

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.