Large deviations for transient random walks in random environment on a Galton–Watson tree

Elie Aidékon

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 1, page 159-189
  • ISSN: 0246-0203

Abstract

top
Consider a random walk in random environment on a supercritical Galton–Watson tree, and let τn be the hitting time of generation n. The paper presents a large deviation principle for τn/n, both in quenched and annealed cases. Then we investigate the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily relies on estimates on the tail distribution of the first regeneration time.

How to cite

top

Aidékon, Elie. "Large deviations for transient random walks in random environment on a Galton–Watson tree." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 159-189. <http://eudml.org/doc/240964>.

@article{Aidékon2010,
abstract = {Consider a random walk in random environment on a supercritical Galton–Watson tree, and let τn be the hitting time of generation n. The paper presents a large deviation principle for τn/n, both in quenched and annealed cases. Then we investigate the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily relies on estimates on the tail distribution of the first regeneration time.},
author = {Aidékon, Elie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk in random environment; law of large numbers; large deviations; Galton–Watson tree; Galton-Watson tree},
language = {eng},
number = {1},
pages = {159-189},
publisher = {Gauthier-Villars},
title = {Large deviations for transient random walks in random environment on a Galton–Watson tree},
url = {http://eudml.org/doc/240964},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Aidékon, Elie
TI - Large deviations for transient random walks in random environment on a Galton–Watson tree
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 159
EP - 189
AB - Consider a random walk in random environment on a supercritical Galton–Watson tree, and let τn be the hitting time of generation n. The paper presents a large deviation principle for τn/n, both in quenched and annealed cases. Then we investigate the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily relies on estimates on the tail distribution of the first regeneration time.
LA - eng
KW - random walk in random environment; law of large numbers; large deviations; Galton–Watson tree; Galton-Watson tree
UR - http://eudml.org/doc/240964
ER -

References

top
  1. [1] E. Aidékon. Transient random walks in random environment on a Galton–Watson tree. Probab. Theory Related Fields 142 (2008) 525–559. Zbl1146.60078MR2438700
  2. [2] K. B. Athreya and P. E. Ney. Branching Processes. Springer, New York, 1972. Zbl0259.60002MR373040
  3. [3] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25–37. Zbl0356.60053MR433619
  4. [4] F. Comets and V. Vargas. Majorizing multiplicative cascades for directed polymers in random media. ALEA 2 (2006) 267–277. Zbl1105.60074MR2249671
  5. [5] A. Dembo, N. Gantert, Y. Peres and O. Zeitouni. Large deviations for random walks on Galton–Watson trees: Averaging and uncertainty. Probab. Theory Related Fields 122 (2002) 241–288. Zbl0996.60110MR1894069
  6. [6] A. Dembo, Y. Peres and O. Zeitouni. Tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys. 181 (1996) 667–683. Zbl0868.60058MR1414305
  7. [7] J. Franchi. Chaos multiplicatif: Un traitement simple et complet de la fonction de partition. In Séminaire de Probabilités, XXIX 194–201. Lecture Notes in Math. 1613. Springer, Berlin, 1995. Zbl0834.60101MR1459460
  8. [8] T. Gross. Marche aléatoire en milieu aléatoire sur un arbre. Ph.D. thesis, 2004. 
  9. [9] H. Kesten, M. V. Kozlov and F. Spitzer. A limit law for random walk in a random environment. Compos. Math. 30 (1975) 145–168. Zbl0388.60069MR380998
  10. [10] Q. Liu. On generalized multiplicative cascades. Stochastic Process. Appl. 86 (2000) 263–286. Zbl1028.60087MR1741808
  11. [11] R. Lyons and R. Pemantle. Random walk in a random environment and first-passage percolation on trees. Ann. Probab. 20 (1992) 125–136. Zbl0751.60066MR1143414
  12. [12] R. Lyons, R. Pemantle and Y. Peres. Biased random walks on Galton–Watson trees. Probab. Theory Related Fields 106 (1996) 249–264. Zbl0859.60076MR1410689
  13. [13] J. Neveu. Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986) 199–207. Zbl0601.60082MR850756
  14. [14] R. Pemantle and Y. Peres. Critical random walk in random environment on trees. Ann. Probab. 23 (1995) 105–140. Zbl0837.60066MR1330763
  15. [15] V. V. Petrov. Sums of Independent Random Variables. Springer, New York, 1975. (Translated from the Russian by A. A. Brown, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82.) Zbl0322.60042MR388499
  16. [16] D. Piau. Théorème central limite fonctionnel pour une marche au hasard en environment aléatoire. Ann. Probab. 26 (1998) 1016–1040. Zbl0938.60085MR1634413
  17. [17] O. Zeitouni. Random walks in random environment. In Lectures on Probability Theory and Statistics 189–312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. Zbl1060.60103MR2071631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.