Large deviations for transient random walks in random environment on a Galton–Watson tree
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 1, page 159-189
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topAidékon, Elie. "Large deviations for transient random walks in random environment on a Galton–Watson tree." Annales de l'I.H.P. Probabilités et statistiques 46.1 (2010): 159-189. <http://eudml.org/doc/240964>.
@article{Aidékon2010,
abstract = {Consider a random walk in random environment on a supercritical Galton–Watson tree, and let τn be the hitting time of generation n. The paper presents a large deviation principle for τn/n, both in quenched and annealed cases. Then we investigate the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily relies on estimates on the tail distribution of the first regeneration time.},
author = {Aidékon, Elie},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {random walk in random environment; law of large numbers; large deviations; Galton–Watson tree; Galton-Watson tree},
language = {eng},
number = {1},
pages = {159-189},
publisher = {Gauthier-Villars},
title = {Large deviations for transient random walks in random environment on a Galton–Watson tree},
url = {http://eudml.org/doc/240964},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Aidékon, Elie
TI - Large deviations for transient random walks in random environment on a Galton–Watson tree
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 1
SP - 159
EP - 189
AB - Consider a random walk in random environment on a supercritical Galton–Watson tree, and let τn be the hitting time of generation n. The paper presents a large deviation principle for τn/n, both in quenched and annealed cases. Then we investigate the subexponential situation, revealing a polynomial regime similar to the one encountered in one dimension. The paper heavily relies on estimates on the tail distribution of the first regeneration time.
LA - eng
KW - random walk in random environment; law of large numbers; large deviations; Galton–Watson tree; Galton-Watson tree
UR - http://eudml.org/doc/240964
ER -
References
top- [1] E. Aidékon. Transient random walks in random environment on a Galton–Watson tree. Probab. Theory Related Fields 142 (2008) 525–559. Zbl1146.60078MR2438700
- [2] K. B. Athreya and P. E. Ney. Branching Processes. Springer, New York, 1972. Zbl0259.60002MR373040
- [3] J. D. Biggins. Martingale convergence in the branching random walk. J. Appl. Probab. 14 (1977) 25–37. Zbl0356.60053MR433619
- [4] F. Comets and V. Vargas. Majorizing multiplicative cascades for directed polymers in random media. ALEA 2 (2006) 267–277. Zbl1105.60074MR2249671
- [5] A. Dembo, N. Gantert, Y. Peres and O. Zeitouni. Large deviations for random walks on Galton–Watson trees: Averaging and uncertainty. Probab. Theory Related Fields 122 (2002) 241–288. Zbl0996.60110MR1894069
- [6] A. Dembo, Y. Peres and O. Zeitouni. Tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys. 181 (1996) 667–683. Zbl0868.60058MR1414305
- [7] J. Franchi. Chaos multiplicatif: Un traitement simple et complet de la fonction de partition. In Séminaire de Probabilités, XXIX 194–201. Lecture Notes in Math. 1613. Springer, Berlin, 1995. Zbl0834.60101MR1459460
- [8] T. Gross. Marche aléatoire en milieu aléatoire sur un arbre. Ph.D. thesis, 2004.
- [9] H. Kesten, M. V. Kozlov and F. Spitzer. A limit law for random walk in a random environment. Compos. Math. 30 (1975) 145–168. Zbl0388.60069MR380998
- [10] Q. Liu. On generalized multiplicative cascades. Stochastic Process. Appl. 86 (2000) 263–286. Zbl1028.60087MR1741808
- [11] R. Lyons and R. Pemantle. Random walk in a random environment and first-passage percolation on trees. Ann. Probab. 20 (1992) 125–136. Zbl0751.60066MR1143414
- [12] R. Lyons, R. Pemantle and Y. Peres. Biased random walks on Galton–Watson trees. Probab. Theory Related Fields 106 (1996) 249–264. Zbl0859.60076MR1410689
- [13] J. Neveu. Arbres et processus de Galton–Watson. Ann. Inst. H. Poincaré Probab. Statist. 22 (1986) 199–207. Zbl0601.60082MR850756
- [14] R. Pemantle and Y. Peres. Critical random walk in random environment on trees. Ann. Probab. 23 (1995) 105–140. Zbl0837.60066MR1330763
- [15] V. V. Petrov. Sums of Independent Random Variables. Springer, New York, 1975. (Translated from the Russian by A. A. Brown, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 82.) Zbl0322.60042MR388499
- [16] D. Piau. Théorème central limite fonctionnel pour une marche au hasard en environment aléatoire. Ann. Probab. 26 (1998) 1016–1040. Zbl0938.60085MR1634413
- [17] O. Zeitouni. Random walks in random environment. In Lectures on Probability Theory and Statistics 189–312. Lecture Notes in Math. 1837. Springer, Berlin, 2004. Zbl1060.60103MR2071631
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.