Arbres et processus de Galton-Watson
Annales de l'I.H.P. Probabilités et statistiques (1986)
- Volume: 22, Issue: 2, page 199-207
- ISSN: 0246-0203
Access Full Article
topHow to cite
topNeveu, J.. "Arbres et processus de Galton-Watson." Annales de l'I.H.P. Probabilités et statistiques 22.2 (1986): 199-207. <http://eudml.org/doc/77276>.
@article{Neveu1986,
author = {Neveu, J.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {notion of a tree in the theory of branching processes; Galton-Watson processes; kin number distributions},
language = {fre},
number = {2},
pages = {199-207},
publisher = {Gauthier-Villars},
title = {Arbres et processus de Galton-Watson},
url = {http://eudml.org/doc/77276},
volume = {22},
year = {1986},
}
TY - JOUR
AU - Neveu, J.
TI - Arbres et processus de Galton-Watson
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 1986
PB - Gauthier-Villars
VL - 22
IS - 2
SP - 199
EP - 207
LA - fre
KW - notion of a tree in the theory of branching processes; Galton-Watson processes; kin number distributions
UR - http://eudml.org/doc/77276
ER -
References
top- [1] B. Chauvin, Arbres et processus de Bellman-Harris. Ann. Inst. H. Poincaré. Zbl0597.60078
- [2] A. Joffe, Remarks on the structure of trees with applications to super-critical Galton-Watson processes. Adv. Proba., t. 5, Éd. Joffe et Ney, 1978. Zbl0414.60078
- [3] A. Joffe et W. A. O'N. Waugh, Exact distributions of kin numbers in a Galton-Watson process. J. Appl. Probab., t. 19, n° 4, p. 767-775. Zbl0496.60089MR675140
Citations in EuDML Documents
top- Quansheng Liu, Local dimensions of the branching measure on a Galton–Watson tree
- B. Chauvin, Arbres et processus de Bellman-Harris
- Peter Jagers, Olle Nerman, The asymptotic composition of supercritical, multi-type branching populations
- Quansheng Liu, The Exact Hausdorff Dimension of a Branching Set
- Laurent Ménard, The two uniform infinite quadrangulations of the plane have the same law
- B. Chauvin, Sur la propriété de Branchement
- Alain Rouault, Espérances et majorations pour un processus de branchement spatial markovien
- Quansheng Liu, Flows in Networks and Hausdorff Measures Associated. Applications to Fractal Sets in Euclidian Space
- David Aldous, Jim Pitman, Tree-valued Markov chains derived from Galton-Watson processes
- Elie Aidékon, Large deviations for transient random walks in random environment on a Galton–Watson tree
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.