On a surprising relation between the Marchenko–Pastur law, rectangular and square free convolutions
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 3, page 644-652
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] T. Banica, S. Belinschi, M. Capitaine and B. Collins. Free Bessel laws. Canad. J. of Math. To appear, 2009. Zbl1218.46040MR2779129
- [2] S. Belinschi, A note on regularity for free convolutions. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 635–648. Zbl1107.46043MR2259979
- [3] S. Belinschi, F. Benaych-Georges and A. Guionnet. Regularization by free additive convolution, square and rectangular cases. Complex Anal. Oper. Theory. To appear, 2009. Zbl1187.46055MR2551632
- [4] F. Benaych-Georges. Failure of the Raikov theorem for free random variables. In Séminaire de Probabilités XXXVIII 313–320. Springer, Berlin, 2004. Zbl1076.46050MR2126982
- [5] F. Benaych-Georges. Infinitely divisible distributions for rectangular free convolution: Classification and matricial interpretation. Probab. Theory Related Fields 139 (2007) 143–189. Zbl1129.15019MR2322694
- [6] F. Benaych-Georges. Rectangular random matrices, related free entropy and free Fisher’s information. J. Oper. Theory. To appear, 2009. Zbl1224.46121MR2552088
- [7] F. Benaych-Georges. Rectangular random matrices, related convolution. Probab. Theory Related Fields 144 (2009) 471–515. Zbl1171.15022MR2496440
- [8] H. Bercovici and V. Pata. Stable laws and domains of attraction in free probability theory. With an appendix by P. Biane. Ann. Math. 149 (1999) 1023–1060. Zbl0945.46046MR1709310
- [9] H. Bercovici and D. Voiculescu. Free convolution of measures with unbounded supports. Indiana Univ. Math. J. 42 (1993) 733–773. Zbl0806.46070MR1254116
- [10] H. Bercovici and D. Voiculescu. Superconvergence to the central limit and failure of the Cramér theorem for free random variables. Probab. Theory Related Fields 102 (1995) 215–222. Zbl0831.60036MR1355057
- [11] G. P. Chistyakov and F. Götze. Limit theorems in free probability theory. I. Ann. Probab. 36 (2008) 54–90. Zbl1157.46037MR2370598
- [12] G. P. Chistyakov and F. Götze. Limit theorems in free probability theory. II. Cent. Eur. J. Math. 6 (2008) 87–117. Zbl1148.46035MR2379953
- [13] M. Debbah and Ø. Ryan. Multiplicative free convolution and information-plus-noise type matrices. arXiv. (The submitted version of this paper, more focused on applications than on the result we are interested in here, is [14].)
- [14] M. Debbah and Ø. Ryan. Free deconvolution for signal processing applications. To appear, 2009.
- [15] V. Gnedenko and A. N. Kolmogorov. Limit Distributions for Sums of Independent Random Variables. Adisson-Wesley, Cambridge, MA, 1954. Zbl0056.36001
- [16] F. Hiai and D. Petz. The Semicircle Law, Free Random Variables, and Entropy. Mathematical Surveys and Monographs 77. Amer. Math. Soc., Providence, RI, 2000. Zbl0955.46037MR1746976
- [17] A. Nica and R. Speicher. Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. Zbl1133.60003MR2266879
- [18] K. I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge, 1999. Zbl0973.60001MR1739520
- [19] D. V. Voiculescu, K. Dykema and A. Nica. Free Random Variables. CRM Monographs Series 1. Amer. Math. Soc., Providence, RI, 1992. Zbl0795.46049MR1217253