On a surprising relation between the Marchenko–Pastur law, rectangular and square free convolutions
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 3, page 644-652
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topBenaych-Georges, Florent. "On a surprising relation between the Marchenko–Pastur law, rectangular and square free convolutions." Annales de l'I.H.P. Probabilités et statistiques 46.3 (2010): 644-652. <http://eudml.org/doc/240980>.
@article{Benaych2010,
abstract = {In this paper, we prove a result linking the square and the rectangular R-transforms, the consequence of which is a surprising relation between the square and rectangular versions the free additive convolutions, involving the Marchenko–Pastur law. Consequences on random matrices, on infinite divisibility and on the arithmetics of the square versions of the free additive and multiplicative convolutions are given.},
author = {Benaych-Georges, Florent},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {free probability; random matrices; free convolution; infinitely divisible laws; Marchenko–Pastur law; Marchenko-Pastur law},
language = {eng},
number = {3},
pages = {644-652},
publisher = {Gauthier-Villars},
title = {On a surprising relation between the Marchenko–Pastur law, rectangular and square free convolutions},
url = {http://eudml.org/doc/240980},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Benaych-Georges, Florent
TI - On a surprising relation between the Marchenko–Pastur law, rectangular and square free convolutions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 644
EP - 652
AB - In this paper, we prove a result linking the square and the rectangular R-transforms, the consequence of which is a surprising relation between the square and rectangular versions the free additive convolutions, involving the Marchenko–Pastur law. Consequences on random matrices, on infinite divisibility and on the arithmetics of the square versions of the free additive and multiplicative convolutions are given.
LA - eng
KW - free probability; random matrices; free convolution; infinitely divisible laws; Marchenko–Pastur law; Marchenko-Pastur law
UR - http://eudml.org/doc/240980
ER -
References
top- [1] T. Banica, S. Belinschi, M. Capitaine and B. Collins. Free Bessel laws. Canad. J. of Math. To appear, 2009. Zbl1218.46040MR2779129
- [2] S. Belinschi, A note on regularity for free convolutions. Ann. Inst. H. Poincaré Probab. Statist. 42 (2006) 635–648. Zbl1107.46043MR2259979
- [3] S. Belinschi, F. Benaych-Georges and A. Guionnet. Regularization by free additive convolution, square and rectangular cases. Complex Anal. Oper. Theory. To appear, 2009. Zbl1187.46055MR2551632
- [4] F. Benaych-Georges. Failure of the Raikov theorem for free random variables. In Séminaire de Probabilités XXXVIII 313–320. Springer, Berlin, 2004. Zbl1076.46050MR2126982
- [5] F. Benaych-Georges. Infinitely divisible distributions for rectangular free convolution: Classification and matricial interpretation. Probab. Theory Related Fields 139 (2007) 143–189. Zbl1129.15019MR2322694
- [6] F. Benaych-Georges. Rectangular random matrices, related free entropy and free Fisher’s information. J. Oper. Theory. To appear, 2009. Zbl1224.46121MR2552088
- [7] F. Benaych-Georges. Rectangular random matrices, related convolution. Probab. Theory Related Fields 144 (2009) 471–515. Zbl1171.15022MR2496440
- [8] H. Bercovici and V. Pata. Stable laws and domains of attraction in free probability theory. With an appendix by P. Biane. Ann. Math. 149 (1999) 1023–1060. Zbl0945.46046MR1709310
- [9] H. Bercovici and D. Voiculescu. Free convolution of measures with unbounded supports. Indiana Univ. Math. J. 42 (1993) 733–773. Zbl0806.46070MR1254116
- [10] H. Bercovici and D. Voiculescu. Superconvergence to the central limit and failure of the Cramér theorem for free random variables. Probab. Theory Related Fields 102 (1995) 215–222. Zbl0831.60036MR1355057
- [11] G. P. Chistyakov and F. Götze. Limit theorems in free probability theory. I. Ann. Probab. 36 (2008) 54–90. Zbl1157.46037MR2370598
- [12] G. P. Chistyakov and F. Götze. Limit theorems in free probability theory. II. Cent. Eur. J. Math. 6 (2008) 87–117. Zbl1148.46035MR2379953
- [13] M. Debbah and Ø. Ryan. Multiplicative free convolution and information-plus-noise type matrices. arXiv. (The submitted version of this paper, more focused on applications than on the result we are interested in here, is [14].)
- [14] M. Debbah and Ø. Ryan. Free deconvolution for signal processing applications. To appear, 2009.
- [15] V. Gnedenko and A. N. Kolmogorov. Limit Distributions for Sums of Independent Random Variables. Adisson-Wesley, Cambridge, MA, 1954. Zbl0056.36001
- [16] F. Hiai and D. Petz. The Semicircle Law, Free Random Variables, and Entropy. Mathematical Surveys and Monographs 77. Amer. Math. Soc., Providence, RI, 2000. Zbl0955.46037MR1746976
- [17] A. Nica and R. Speicher. Lectures on the Combinatorics of Free Probability. London Mathematical Society Lecture Note Series 335. Cambridge Univ. Press, Cambridge, 2006. Zbl1133.60003MR2266879
- [18] K. I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge, 1999. Zbl0973.60001MR1739520
- [19] D. V. Voiculescu, K. Dykema and A. Nica. Free Random Variables. CRM Monographs Series 1. Amer. Math. Soc., Providence, RI, 1992. Zbl0795.46049MR1217253
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.