A note on regularity for free convolutions

Serban Teodor Belinschi

Annales de l'I.H.P. Probabilités et statistiques (2006)

  • Volume: 42, Issue: 5, page 635-648
  • ISSN: 0246-0203

How to cite


Belinschi, Serban Teodor. "A note on regularity for free convolutions." Annales de l'I.H.P. Probabilités et statistiques 42.5 (2006): 635-648. <http://eudml.org/doc/77912>.

author = {Belinschi, Serban Teodor},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {free convolutions; cluster sets of analytic functions},
language = {eng},
number = {5},
pages = {635-648},
publisher = {Elsevier},
title = {A note on regularity for free convolutions},
url = {http://eudml.org/doc/77912},
volume = {42},
year = {2006},

AU - Belinschi, Serban Teodor
TI - A note on regularity for free convolutions
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2006
PB - Elsevier
VL - 42
IS - 5
SP - 635
EP - 648
LA - eng
KW - free convolutions; cluster sets of analytic functions
UR - http://eudml.org/doc/77912
ER -


  1. [1] S.T. Belinschi, The atoms of the free multiplicative convolution of two probability distributions, Integral Equations Operator Theory46 (4) (2003) 377-386. Zbl1028.46095MR1997977
  2. [2] S.T. Belinschi, H. Bercovici, Atoms and regularity for measures in a partially defined free convolution semigroup, Math. Z.248 (4) (2004) 665-674. Zbl1065.46045MR2103535
  3. [3] S.T. Belinschi, H. Bercovici, Partially defined semigroups relative to multiplicative free convolution, Int. Math. Res. Not.2 (2005) 65-101. Zbl1092.46046MR2128863
  4. [4] H. Bercovici, Personal communication. 
  5. [5] H. Bercovici, D. Voiculescu, Convolutions of measures with unbounded support, Indiana Univ. Math. J.42 (3) (1993) 733-773. Zbl0806.46070MR1254116
  6. [6] H. Bercovici, D. Voiculescu, Regularity questions for free convolution, in: Nonselfadjoint Operator Algebras, Operator Theory, and Related Topics, Oper. Theory Adv. Appl., vol. 104, Birkhäuser, Basel, 1998, pp. 37-47. Zbl0927.46048MR1639647
  7. [7] P. Biane, On the free convolution with a semi-circular distribution, Indiana Univ. Math. J.46 (3) (1997) 705-718. Zbl0904.46045MR1488333
  8. [8] P. Biane, Processes with free increments, Math. Z.227 (1) (1998) 143-174. Zbl0902.60060MR1605393
  9. [9] P. Billingsley, Probability and Measure, Wiley Ser. Probab. Math. Statist., Wiley, New York, 1995. Zbl0649.60001MR1324786
  10. [10] E.F. Collingwood, A.J. Lohwater, The Theory of Cluster Sets, Cambridge University Press, Cambridge, 1966. Zbl0149.03003MR231999
  11. [11] P.L. Duren, Theory of H p Spaces, Academic Press, New York, 1970. Zbl0215.20203MR268655
  12. [12] S. Saks, Theory of the Integral, Monografie Matematyczne, Warszawa, 1937. JFM63.0183.05
  13. [13] E. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., vol. 32, Princeton University Press, Princeton, NJ, 1971. Zbl0232.42007MR304972
  14. [14] D. Voiculescu, Multiplication of certain noncommuting random variables, J. Operator Theory18 (2) (1987) 223-235. Zbl0662.46069MR915507
  15. [15] D. Voiculescu, The analogues of entropy and of Fisher's information measure in free probability theory. I, Comm. Math. Phys.155 (1) (1993) 411-440. Zbl0781.60006MR1228526
  16. [16] D.V. Voiculescu, K.J. Dykema, A. Nica, Free Random Variables, CRM Monogr. Ser., vol. 1, American Mathematical Society, Providence, RI, 1992. Zbl0795.46049MR1217253

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.