Nonparametric adaptive estimation for pure jump Lévy processes

F. Comte; V. Genon-Catalot

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 3, page 595-617
  • ISSN: 0246-0203

Abstract

top
This paper is concerned with nonparametric estimation of the Lévy density of a pure jump Lévy process. The sample path is observed at n discrete instants with fixed sampling interval. We construct a collection of estimators obtained by deconvolution methods and deduced from appropriate estimators of the characteristic function and its first derivative. We obtain a bound for the -risk, under general assumptions on the model. Then we propose a penalty function that allows to build an adaptive estimator. The risk bound for the adaptive estimator is obtained under additional assumptions on the Lévy density. Examples of models fitting in our framework are described and rates of convergence of the estimator are discussed.

How to cite

top

Comte, F., and Genon-Catalot, V.. "Nonparametric adaptive estimation for pure jump Lévy processes." Annales de l'I.H.P. Probabilités et statistiques 46.3 (2010): 595-617. <http://eudml.org/doc/241006>.

@article{Comte2010,
abstract = {This paper is concerned with nonparametric estimation of the Lévy density of a pure jump Lévy process. The sample path is observed at n discrete instants with fixed sampling interval. We construct a collection of estimators obtained by deconvolution methods and deduced from appropriate estimators of the characteristic function and its first derivative. We obtain a bound for the -risk, under general assumptions on the model. Then we propose a penalty function that allows to build an adaptive estimator. The risk bound for the adaptive estimator is obtained under additional assumptions on the Lévy density. Examples of models fitting in our framework are described and rates of convergence of the estimator are discussed.},
author = {Comte, F., Genon-Catalot, V.},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {adaptive estimation; deconvolution; Lévy process; nonparametric projection estimator},
language = {eng},
number = {3},
pages = {595-617},
publisher = {Gauthier-Villars},
title = {Nonparametric adaptive estimation for pure jump Lévy processes},
url = {http://eudml.org/doc/241006},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Comte, F.
AU - Genon-Catalot, V.
TI - Nonparametric adaptive estimation for pure jump Lévy processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 3
SP - 595
EP - 617
AB - This paper is concerned with nonparametric estimation of the Lévy density of a pure jump Lévy process. The sample path is observed at n discrete instants with fixed sampling interval. We construct a collection of estimators obtained by deconvolution methods and deduced from appropriate estimators of the characteristic function and its first derivative. We obtain a bound for the -risk, under general assumptions on the model. Then we propose a penalty function that allows to build an adaptive estimator. The risk bound for the adaptive estimator is obtained under additional assumptions on the Lévy density. Examples of models fitting in our framework are described and rates of convergence of the estimator are discussed.
LA - eng
KW - adaptive estimation; deconvolution; Lévy process; nonparametric projection estimator
UR - http://eudml.org/doc/241006
ER -

References

top
  1. [1] O. E. Barndorff-Nielsen and N. Shephard. Modelling by Lévy processes for financial econometrics. In Lévy Processes. Theory and Applications 283–318. O. E. Barndorff-Nielsen, T. Mikosch and S. L. Resnick (Eds). Birkhauser, Boston, 2001. Zbl0991.62089MR1833702
  2. [2] I. V. Basawa and P. J. Brockwell. Nonparametric estimation for nondecreasing Lévy processes. J. Roy. Statist. Soc. Ser. B 44 (1982) 262–269. Zbl0491.62069MR676217
  3. [3] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. Zbl0938.60005MR1406564
  4. [4] L. Birgé and P. Massart. Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4 (1998) 329–375. Zbl0954.62033MR1653272
  5. [5] F. Comte and C. Lacour. Deconvolution with estimated error. Preprint MAP5 2008-15, 2008. Available at http://www.math-info.univ-paris5.fr/map5/Prepublications-2008. Zbl1186.62061
  6. [6] F. Comte, Y. Rozenholc and M.-L. Taupin. Penalized contrast estimator for adaptive density deconvolution. Canad. J. Statist. 34 (2006) 431–452. Zbl1104.62033MR2328553
  7. [7] R. Cont and P. Tankov. Financial modelling with jump processes. In Financial Mathematics Series. Chapman & Hall/CRC, Boca Raton, 2004. Zbl1052.91043MR2042661
  8. [8] P. J. Diggle and P. Hall. A Fourier approach to nonparametric deconvolution of a density estimate. J. Roy. Statist. Soc. Ser. B 55 (1993) 523–531. Zbl0783.62030MR1224414
  9. [9] E. Eberlein and U. Keller. Hyperbolic distributions in finance. Bernoulli 1 (1995) 281–299. Zbl0836.62107
  10. [10] J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist. 19 (1991) 1257–1272. Zbl0729.62033MR1126324
  11. [11] J. E. Figueroa-López and C. Houdré. Risk bounds for the nonparametric estimation of Lévy processes. IMS Lecture Notes Monogr. Ser. 51 (2006) 96–116. Zbl1117.62085MR2387763
  12. [12] G. Jongbloed and F. H. van der Meulen. Parametric estimation for subordinators and induced OU processes. Scand. J. Statist. 33 (2006) 825–847. Zbl1164.62372MR2300918
  13. [13] G. Jongbloed, F. H. van der Meulen and A. W. van der Vaart. Nonparametric inference for Lévy-driven Ornstein–Uhlenbeck processes. Bernoulli 11 (2005) 759–791. Zbl1084.62080MR2172840
  14. [14] T. Klein and E. Rio. Concentration around the mean for maxima of empirical processes. Ann. Probab. 33 (2005) 1060–1077. Zbl1066.60023MR2135312
  15. [15] U. Küchler and S. Tappe. Bilateral Gamma distributions and processes in financial mathematics. Stochastic Processes Appl. 118 (2008) 261–283. Zbl1133.62089MR2376902
  16. [16] M. Ledoux and M. Talagrand. Probability in Banach Spaces. Isoperimetry and Processes. Ergebnisse der Mathematik und ihrer Grenzgebiete 3. Folge 23. Springer, Berlin, 1991. Zbl0748.60004MR1102015
  17. [17] D. B. Madan and E. Seneta. The Variance Gamma (V. G.) model for share market returns. The Journal of Business 63 (1990) 511–524. 
  18. [18] Y. Meyer. Ondelettes et opérateurs I. Hermann, Paris, 1990. Zbl0694.41037MR1085487
  19. [19] M. Neumann. On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Stat. 7 (1997) 307–330. Zbl1003.62514MR1460203
  20. [20] M. Neumann and M. Reiss. Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli 15 (2009) 223–248. Zbl1200.62095MR2546805
  21. [21] K. I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics 68. Cambridge Univ. Press, Cambridge, 1999. Zbl0973.60001MR1739520
  22. [22] R. N. Watteel and R. J. Kulperger. Nonparametric estimation of the canonical measure for infinitely divisible distributions. J. Stat. Comput. Simul. 73 (2003) 525–542. Zbl1031.62030MR1986343

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.