Nonparametric inference for discretely sampled Lévy processes
Annales de l'I.H.P. Probabilités et statistiques (2012)
- Volume: 48, Issue: 1, page 282-307
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topGugushvili, Shota. "Nonparametric inference for discretely sampled Lévy processes." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 282-307. <http://eudml.org/doc/271941>.
@article{Gugushvili2012,
abstract = {Given a sample from a discretely observed Lévy process X = (Xt)t≥0 of the finite jump activity, the problem of nonparametric estimation of the Lévy density ρ corresponding to the process X is studied. An estimator of ρ is proposed that is based on a suitable inversion of the Lévy–Khintchine formula and a plug-in device. The main results of the paper deal with upper risk bounds for estimation of ρ over suitable classes of Lévy triplets. The corresponding lower bounds are also discussed.},
author = {Gugushvili, Shota},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {empirical characteristic function; empirical process; Fourier inversion; Lévy density; Lévy process; maximal inequality; mean square error},
language = {eng},
number = {1},
pages = {282-307},
publisher = {Gauthier-Villars},
title = {Nonparametric inference for discretely sampled Lévy processes},
url = {http://eudml.org/doc/271941},
volume = {48},
year = {2012},
}
TY - JOUR
AU - Gugushvili, Shota
TI - Nonparametric inference for discretely sampled Lévy processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 282
EP - 307
AB - Given a sample from a discretely observed Lévy process X = (Xt)t≥0 of the finite jump activity, the problem of nonparametric estimation of the Lévy density ρ corresponding to the process X is studied. An estimator of ρ is proposed that is based on a suitable inversion of the Lévy–Khintchine formula and a plug-in device. The main results of the paper deal with upper risk bounds for estimation of ρ over suitable classes of Lévy triplets. The corresponding lower bounds are also discussed.
LA - eng
KW - empirical characteristic function; empirical process; Fourier inversion; Lévy density; Lévy process; maximal inequality; mean square error
UR - http://eudml.org/doc/271941
ER -
References
top- [1] Y. Aït-Sahalia and J. Jacod. Volatility estimators for discretely sampled Lévy processes. Ann. Statist.35 (2007) 355–392. Zbl1114.62109MR2332279
- [2] M. G. Akritas. Asymptotic theory for estimating the parameters of a Lévy process. Ann. Inst. Statist. Math.34 (1982) 259–280. Zbl0491.62070MR666416
- [3] M. G. Akritas and R. A. Johnson. Asymptotic inference in Lévy processes of the discontinuous type. Ann. Statist.9 (1981) 604–614. Zbl0481.62069MR615436
- [4] I. V. Basawa and P. J. Brockwell. Inference for gamma and stable processes. Biometrika65 (1978) 129–133. Zbl0381.62075MR494746
- [5] I. V. Basawa and P. J. Brockwell. A note on estimation for gamma and stable processes. Biometrika67 (1980) 234–236. Zbl0425.62067MR570526
- [6] D. Belomestny and M. Reiß. Spectral calibration of exponential Lévy models. Finance Stoch.10 (2006) 449–474. Zbl1126.91022MR2276314
- [7] D. Belomestny and M. Reiß. Spectral calibration of exponential Lévy models [2]. Discussion Paper 2006-035, SFB 649, 2006. Zbl1126.91022
- [8] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. Zbl0938.60005MR1406564
- [9] B. M. Bibby and M. Sørensen. A hyperbolic diffusion model for stock prices. Finance Stoch.1 (1997) 25–41. Zbl0883.90010
- [10] P. Blæsild and M. Sørensen. HYP – A computer program for analyzing data by means of the hyperbolic distribution. Research Report 248, Dept. Mathematical Statistics, Aarhus Univ., 1992.
- [11] S. Borak, W. Härdle and R. Weron. Stable distributions. In Statistical Tools for Finance and Insurance 21–44. P. Cizek, W. Härdle and R. Weron (Eds). Springer, Berlin, 2005. MR2156758
- [12] L. D. Brown, M. G. Low and L. H. Zhao. Superefficiency in nonparametric function estimation. Ann. Statist.25 (1997) 2607–2625. Zbl0895.62043MR1604424
- [13] B. Buchmann. Weighted empirical processes in the nonparametric inference for Lévy processes. Math. Methods Statist.18 (2009) 281–309. Zbl1282.60049MR2608164
- [14] B. Buchmann and R. Grübel. Decompounding: An estimation problem for Poisson random sums. Ann. Statist.31 (2003) 1054–1074. Zbl1105.62309MR2001642
- [15] B. Buchmann and R. Grübel. Decompounding Poisson random sums: Recursively truncated estimates in the discrete case. Ann. Inst. Statist. Math.56 (2004) 743–756. Zbl1078.62020MR2126809
- [16] E. V. Burnaev. Inversion formula for infinitely divisible distributions. Russian Math. Surveys61 (2006) 772–774. Zbl1121.60013MR2278841
- [17] C. Butucea and C. Matias. Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model. Bernoulli11 (2005) 309–340. Zbl1063.62044MR2132729
- [18] C. Butucea and A. B. Tsybakov. Sharp optimality for density deconvolution with dominating bias, I. Theory Probab. Appl.52 (2008) 24–39. Zbl1141.62021MR2354572
- [19] C. Butucea and A. B. Tsybakov. Sharp optimality for density deconvolution with dominating bias, II. Theory Probab. Appl.52 (2008) 237–249. Zbl1142.62017MR2742504
- [20] P. Carr, H. Geman, D. B. Madan, and M. Yor. The fine structure of asset returns: An empirical investigation. J. Bus.75 (2002) 305–332.
- [21] S. X. Chen, A. Delaigle and P. Hall. Nonparametric estimation for a class of Lévy processes. J. Econometrics157 (2010) 257–271. MR2661599
- [22] K. L. Chung. A Course in Probability Theory, 3rd edition. Academic Press, San Diego, CA, 2001. Zbl0345.60003MR1796326
- [23] F. Comte and V. Genon-Catalot. Nonparametric estimation for pure jump Lévy processes based on high frequency data. Stochastic Process. Appl.119 (2009) 4088–4123. Zbl1177.62043MR2565560
- [24] F. Comte and V. Genon-Catalot. Nonparametric adaptive estimation for pure jump Lévy processes. Ann. Inst. H. Poincaré Probab. Stat.46 (2010) 595–617. Zbl1201.62042MR2682259
- [25] F. Comte and V. Genon-Catalot. Non-parametric estimation for pure jump irregularly sampled or noisy Lévy processes. Stat. Neerl.64 (2010) 290–313. Zbl1201.62042MR2683462
- [26] F. Comte and V. Genon-Catalot. Estimation for Lévy processes from high frequency data within a long time interval. Ann. Statist.39 (2011) 803–837. Zbl1215.62084MR2816339
- [27] F. Comte and C. Lacour. Data driven density estimation in presence of additive noise with unknown distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. (2011). To appear. DOI:10.1111/j.1467-9868.2011.00775.x. Zbl1226.62034MR2853732
- [28] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton, 2003. Zbl1052.91043
- [29] R. Cont and P. Tankov. Retrieving Lévy processes from option prices: Regularization of an ill-posed inverse problem. SIAM J. Control Optim.45 (2006) 1–25. Zbl1110.49033MR2225295
- [30] A. Delaigle. An alternative view of the deconvolution problem. Statist. Sinica18 (2008) 1025–1045. Zbl1149.62025MR2440402
- [31] L. Devroye. On the non-consistency of an estimate of Chiu. Statist. Probab. Lett.20 (1994) 183–188. Zbl0802.62041MR1294102
- [32] L. Devroye and L. Györfi. Nonparametric Density Estimation: TheL1 View. Wiley, New York, 1985. Zbl0546.62015MR780746
- [33] J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist.19 (1991) 1257–1272. Zbl0729.62033MR1126324
- [34] J. Fan. Deconvolution with supersmooth distributions. Canad. J. Statist.20 (1992) 155–169. Zbl0754.62020MR1183078
- [35] E. Figueroa-López. Sieve-based confidence intervals and bands for Lévy densities. Bernoulli17 (2011) 643–670. Zbl06083986MR2787609
- [36] S. Gugushvili. Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process. J. Nonparametr. Stat.21 (2009) 321–343. Zbl1158.62023MR2530929
- [37] S. Gugushvili, C. Klaassen and P. Spreij (Eds). Statistical Inference for Lévy Processes with Applications to Finance. Stat. Neerl. 64 (3), 2010. MR2683459
- [38] S. Gugushvili, B. van Es and P. Spreij. Deconvolution for an atomic distribution: Rates of convergence. J. Nonparametr. Stat. (2011). To appear. DOI:10.1080/10485252.2011.576763. Zbl1230.62041MR2854252
- [39] G. Jongbloed and F. H. van der Meulen. Parametric estimation for subordinators and induced OU processes. Scand. J. Stat.33 (2006) 825–847. Zbl1164.62372MR2300918
- [40] G. Jongbloed, F. H. van der Meulen and A. W. van der Vaart. Nonparametric inference for Lévy-driven Ornstein–Uhlenbeck processes. Bernoulli11 (2005) 759–791. Zbl1084.62080MR2172840
- [41] J. Kappus and M. Reiß. Estimation of the characteristics of a Lévy process observed at arbitrary frequency. Stat. Neerl.64 (2010) 314–328. MR2683463
- [42] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. Zbl06176054MR2250061
- [43] A. Meister. Density estimation with normal measurement error with unknown variance. Statist. Sinica16 (2006) 195–211. Zbl1087.62049MR2256087
- [44] R. C. Merton. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ.3 (1976) 125–144. Zbl1131.91344
- [45] M. H. Neumann. On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Statist.7 (1997) 307–330. Zbl1003.62514MR1460203
- [46] M. H. Neumann and M. Reiß. Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli15 (2009) 223–248. Zbl1200.62095MR2546805
- [47] J. P. Nolan. Maximum likelihood estimation and diagnostics for stable distributions. In Lévy Processes: Theory and Applications 379–400. O. E. Barndorff-Nielsen, T. Mikosch, and S. I. Resnick (Eds). Birkhäuser, Boston, 2001. Zbl0971.62008MR1833706
- [48] Y.-F. Ren and H.-Y. Liang. On the best constant in Marcinkiewicz–Zygmund inequality. Statist. Probab. Lett.53 (1999) 227–233. Zbl0991.60011MR1841623
- [49] T. H. Rydberg. The normal inverse Gaussian Lévy process: Simulation and approximation. Stoch. Models13 (1997) 887–910. Zbl0899.60036MR1482297
- [50] K.-I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge, 2004. Zbl1287.60003
- [51] J. Söhl. Polar sets for anisotropic Gaussian random fields. Statist. Probab. Lett.80 (2010) 840–847. Zbl1193.60068MR2608824
- [52] A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, New York, 2009. Zbl1029.62034MR2724359
- [53] A. W. van der Vaart. Asymptotic Statistics. Cambridge Univ. Press, Cambridge, 1998. Zbl0910.62001MR1652247
- [54] A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York, 1996. Zbl0862.60002MR1385671
- [55] B. van Es and S. Gugushvili. Asymptotic normality of the deconvolution kernel density estimator under the vanishing error variance. J. Korean Statist. Soc.39 (2010) 102–115. Zbl1293.62088MR2655814
- [56] B. van Es, S. Gugushvili and P. Spreij. A kernel type nonparametric density estimator for decompounding. Bernoulli13 (2007) 672–694. Zbl1129.62030MR2348746
- [57] M. P. Wand. Finite sample performance of deconvolving density estimators. Statist. Probab. Lett.37 (1998) 131–139. Zbl0886.62048MR1620450
- [58] R. N. Watteel and R. J. Kulperger. Nonparametric estimation of the canonical measure for infinitely divisible distributions. J. Stat. Comput. Simul.73 (2003) 525–542. Zbl1031.62030MR1986343
- [59] V. M. Zolotarev. One-Dimensional Stable Distributions. American Mathematical Society, Providence, 1986. Zbl0589.60015MR854867
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.