Nonparametric inference for discretely sampled Lévy processes

Shota Gugushvili

Annales de l'I.H.P. Probabilités et statistiques (2012)

  • Volume: 48, Issue: 1, page 282-307
  • ISSN: 0246-0203

Abstract

top
Given a sample from a discretely observed Lévy process X = (Xt)t≥0 of the finite jump activity, the problem of nonparametric estimation of the Lévy density ρ corresponding to the process X is studied. An estimator of ρ is proposed that is based on a suitable inversion of the Lévy–Khintchine formula and a plug-in device. The main results of the paper deal with upper risk bounds for estimation of ρ over suitable classes of Lévy triplets. The corresponding lower bounds are also discussed.

How to cite

top

Gugushvili, Shota. "Nonparametric inference for discretely sampled Lévy processes." Annales de l'I.H.P. Probabilités et statistiques 48.1 (2012): 282-307. <http://eudml.org/doc/271941>.

@article{Gugushvili2012,
abstract = {Given a sample from a discretely observed Lévy process X = (Xt)t≥0 of the finite jump activity, the problem of nonparametric estimation of the Lévy density ρ corresponding to the process X is studied. An estimator of ρ is proposed that is based on a suitable inversion of the Lévy–Khintchine formula and a plug-in device. The main results of the paper deal with upper risk bounds for estimation of ρ over suitable classes of Lévy triplets. The corresponding lower bounds are also discussed.},
author = {Gugushvili, Shota},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {empirical characteristic function; empirical process; Fourier inversion; Lévy density; Lévy process; maximal inequality; mean square error},
language = {eng},
number = {1},
pages = {282-307},
publisher = {Gauthier-Villars},
title = {Nonparametric inference for discretely sampled Lévy processes},
url = {http://eudml.org/doc/271941},
volume = {48},
year = {2012},
}

TY - JOUR
AU - Gugushvili, Shota
TI - Nonparametric inference for discretely sampled Lévy processes
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2012
PB - Gauthier-Villars
VL - 48
IS - 1
SP - 282
EP - 307
AB - Given a sample from a discretely observed Lévy process X = (Xt)t≥0 of the finite jump activity, the problem of nonparametric estimation of the Lévy density ρ corresponding to the process X is studied. An estimator of ρ is proposed that is based on a suitable inversion of the Lévy–Khintchine formula and a plug-in device. The main results of the paper deal with upper risk bounds for estimation of ρ over suitable classes of Lévy triplets. The corresponding lower bounds are also discussed.
LA - eng
KW - empirical characteristic function; empirical process; Fourier inversion; Lévy density; Lévy process; maximal inequality; mean square error
UR - http://eudml.org/doc/271941
ER -

References

top
  1. [1] Y. Aït-Sahalia and J. Jacod. Volatility estimators for discretely sampled Lévy processes. Ann. Statist.35 (2007) 355–392. Zbl1114.62109MR2332279
  2. [2] M. G. Akritas. Asymptotic theory for estimating the parameters of a Lévy process. Ann. Inst. Statist. Math.34 (1982) 259–280. Zbl0491.62070MR666416
  3. [3] M. G. Akritas and R. A. Johnson. Asymptotic inference in Lévy processes of the discontinuous type. Ann. Statist.9 (1981) 604–614. Zbl0481.62069MR615436
  4. [4] I. V. Basawa and P. J. Brockwell. Inference for gamma and stable processes. Biometrika65 (1978) 129–133. Zbl0381.62075MR494746
  5. [5] I. V. Basawa and P. J. Brockwell. A note on estimation for gamma and stable processes. Biometrika67 (1980) 234–236. Zbl0425.62067MR570526
  6. [6] D. Belomestny and M. Reiß. Spectral calibration of exponential Lévy models. Finance Stoch.10 (2006) 449–474. Zbl1126.91022MR2276314
  7. [7] D. Belomestny and M. Reiß. Spectral calibration of exponential Lévy models [2]. Discussion Paper 2006-035, SFB 649, 2006. Zbl1126.91022
  8. [8] J. Bertoin. Lévy Processes. Cambridge Univ. Press, Cambridge, 1996. Zbl0938.60005MR1406564
  9. [9] B. M. Bibby and M. Sørensen. A hyperbolic diffusion model for stock prices. Finance Stoch.1 (1997) 25–41. Zbl0883.90010
  10. [10] P. Blæsild and M. Sørensen. HYP – A computer program for analyzing data by means of the hyperbolic distribution. Research Report 248, Dept. Mathematical Statistics, Aarhus Univ., 1992. 
  11. [11] S. Borak, W. Härdle and R. Weron. Stable distributions. In Statistical Tools for Finance and Insurance 21–44. P. Cizek, W. Härdle and R. Weron (Eds). Springer, Berlin, 2005. MR2156758
  12. [12] L. D. Brown, M. G. Low and L. H. Zhao. Superefficiency in nonparametric function estimation. Ann. Statist.25 (1997) 2607–2625. Zbl0895.62043MR1604424
  13. [13] B. Buchmann. Weighted empirical processes in the nonparametric inference for Lévy processes. Math. Methods Statist.18 (2009) 281–309. Zbl1282.60049MR2608164
  14. [14] B. Buchmann and R. Grübel. Decompounding: An estimation problem for Poisson random sums. Ann. Statist.31 (2003) 1054–1074. Zbl1105.62309MR2001642
  15. [15] B. Buchmann and R. Grübel. Decompounding Poisson random sums: Recursively truncated estimates in the discrete case. Ann. Inst. Statist. Math.56 (2004) 743–756. Zbl1078.62020MR2126809
  16. [16] E. V. Burnaev. Inversion formula for infinitely divisible distributions. Russian Math. Surveys61 (2006) 772–774. Zbl1121.60013MR2278841
  17. [17] C. Butucea and C. Matias. Minimax estimation of the noise level and of the deconvolution density in a semiparametric convolution model. Bernoulli11 (2005) 309–340. Zbl1063.62044MR2132729
  18. [18] C. Butucea and A. B. Tsybakov. Sharp optimality for density deconvolution with dominating bias, I. Theory Probab. Appl.52 (2008) 24–39. Zbl1141.62021MR2354572
  19. [19] C. Butucea and A. B. Tsybakov. Sharp optimality for density deconvolution with dominating bias, II. Theory Probab. Appl.52 (2008) 237–249. Zbl1142.62017MR2742504
  20. [20] P. Carr, H. Geman, D. B. Madan, and M. Yor. The fine structure of asset returns: An empirical investigation. J. Bus.75 (2002) 305–332. 
  21. [21] S. X. Chen, A. Delaigle and P. Hall. Nonparametric estimation for a class of Lévy processes. J. Econometrics157 (2010) 257–271. MR2661599
  22. [22] K. L. Chung. A Course in Probability Theory, 3rd edition. Academic Press, San Diego, CA, 2001. Zbl0345.60003MR1796326
  23. [23] F. Comte and V. Genon-Catalot. Nonparametric estimation for pure jump Lévy processes based on high frequency data. Stochastic Process. Appl.119 (2009) 4088–4123. Zbl1177.62043MR2565560
  24. [24] F. Comte and V. Genon-Catalot. Nonparametric adaptive estimation for pure jump Lévy processes. Ann. Inst. H. Poincaré Probab. Stat.46 (2010) 595–617. Zbl1201.62042MR2682259
  25. [25] F. Comte and V. Genon-Catalot. Non-parametric estimation for pure jump irregularly sampled or noisy Lévy processes. Stat. Neerl.64 (2010) 290–313. Zbl1201.62042MR2683462
  26. [26] F. Comte and V. Genon-Catalot. Estimation for Lévy processes from high frequency data within a long time interval. Ann. Statist.39 (2011) 803–837. Zbl1215.62084MR2816339
  27. [27] F. Comte and C. Lacour. Data driven density estimation in presence of additive noise with unknown distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. (2011). To appear. DOI:10.1111/j.1467-9868.2011.00775.x. Zbl1226.62034MR2853732
  28. [28] R. Cont and P. Tankov. Financial Modelling with Jump Processes. Chapman & Hall/CRC, Boca Raton, 2003. Zbl1052.91043
  29. [29] R. Cont and P. Tankov. Retrieving Lévy processes from option prices: Regularization of an ill-posed inverse problem. SIAM J. Control Optim.45 (2006) 1–25. Zbl1110.49033MR2225295
  30. [30] A. Delaigle. An alternative view of the deconvolution problem. Statist. Sinica18 (2008) 1025–1045. Zbl1149.62025MR2440402
  31. [31] L. Devroye. On the non-consistency of an estimate of Chiu. Statist. Probab. Lett.20 (1994) 183–188. Zbl0802.62041MR1294102
  32. [32] L. Devroye and L. Györfi. Nonparametric Density Estimation: TheL1 View. Wiley, New York, 1985. Zbl0546.62015MR780746
  33. [33] J. Fan. On the optimal rates of convergence for nonparametric deconvolution problems. Ann. Statist.19 (1991) 1257–1272. Zbl0729.62033MR1126324
  34. [34] J. Fan. Deconvolution with supersmooth distributions. Canad. J. Statist.20 (1992) 155–169. Zbl0754.62020MR1183078
  35. [35] E. Figueroa-López. Sieve-based confidence intervals and bands for Lévy densities. Bernoulli17 (2011) 643–670. Zbl06083986MR2787609
  36. [36] S. Gugushvili. Nonparametric estimation of the characteristic triplet of a discretely observed Lévy process. J. Nonparametr. Stat.21 (2009) 321–343. Zbl1158.62023MR2530929
  37. [37] S. Gugushvili, C. Klaassen and P. Spreij (Eds). Statistical Inference for Lévy Processes with Applications to Finance. Stat. Neerl. 64 (3), 2010. MR2683459
  38. [38] S. Gugushvili, B. van Es and P. Spreij. Deconvolution for an atomic distribution: Rates of convergence. J. Nonparametr. Stat. (2011). To appear. DOI:10.1080/10485252.2011.576763. Zbl1230.62041MR2854252
  39. [39] G. Jongbloed and F. H. van der Meulen. Parametric estimation for subordinators and induced OU processes. Scand. J. Stat.33 (2006) 825–847. Zbl1164.62372MR2300918
  40. [40] G. Jongbloed, F. H. van der Meulen and A. W. van der Vaart. Nonparametric inference for Lévy-driven Ornstein–Uhlenbeck processes. Bernoulli11 (2005) 759–791. Zbl1084.62080MR2172840
  41. [41] J. Kappus and M. Reiß. Estimation of the characteristics of a Lévy process observed at arbitrary frequency. Stat. Neerl.64 (2010) 314–328. MR2683463
  42. [42] A. E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer, Berlin, 2006. Zbl06176054MR2250061
  43. [43] A. Meister. Density estimation with normal measurement error with unknown variance. Statist. Sinica16 (2006) 195–211. Zbl1087.62049MR2256087
  44. [44] R. C. Merton. Option pricing when underlying stock returns are discontinuous. J. Financ. Econ.3 (1976) 125–144. Zbl1131.91344
  45. [45] M. H. Neumann. On the effect of estimating the error density in nonparametric deconvolution. J. Nonparametr. Statist.7 (1997) 307–330. Zbl1003.62514MR1460203
  46. [46] M. H. Neumann and M. Reiß. Nonparametric estimation for Lévy processes from low-frequency observations. Bernoulli15 (2009) 223–248. Zbl1200.62095MR2546805
  47. [47] J. P. Nolan. Maximum likelihood estimation and diagnostics for stable distributions. In Lévy Processes: Theory and Applications 379–400. O. E. Barndorff-Nielsen, T. Mikosch, and S. I. Resnick (Eds). Birkhäuser, Boston, 2001. Zbl0971.62008MR1833706
  48. [48] Y.-F. Ren and H.-Y. Liang. On the best constant in Marcinkiewicz–Zygmund inequality. Statist. Probab. Lett.53 (1999) 227–233. Zbl0991.60011MR1841623
  49. [49] T. H. Rydberg. The normal inverse Gaussian Lévy process: Simulation and approximation. Stoch. Models13 (1997) 887–910. Zbl0899.60036MR1482297
  50. [50] K.-I. Sato. Lévy Processes and Infinitely Divisible Distributions. Cambridge Univ. Press, Cambridge, 2004. Zbl1287.60003
  51. [51] J. Söhl. Polar sets for anisotropic Gaussian random fields. Statist. Probab. Lett.80 (2010) 840–847. Zbl1193.60068MR2608824
  52. [52] A. B. Tsybakov. Introduction to Nonparametric Estimation. Springer, New York, 2009. Zbl1029.62034MR2724359
  53. [53] A. W. van der Vaart. Asymptotic Statistics. Cambridge Univ. Press, Cambridge, 1998. Zbl0910.62001MR1652247
  54. [54] A. W. van der Vaart and J. A. Wellner. Weak Convergence and Empirical Processes with Applications to Statistics. Springer, New York, 1996. Zbl0862.60002MR1385671
  55. [55] B. van Es and S. Gugushvili. Asymptotic normality of the deconvolution kernel density estimator under the vanishing error variance. J. Korean Statist. Soc.39 (2010) 102–115. Zbl1293.62088MR2655814
  56. [56] B. van Es, S. Gugushvili and P. Spreij. A kernel type nonparametric density estimator for decompounding. Bernoulli13 (2007) 672–694. Zbl1129.62030MR2348746
  57. [57] M. P. Wand. Finite sample performance of deconvolving density estimators. Statist. Probab. Lett.37 (1998) 131–139. Zbl0886.62048MR1620450
  58. [58] R. N. Watteel and R. J. Kulperger. Nonparametric estimation of the canonical measure for infinitely divisible distributions. J. Stat. Comput. Simul.73 (2003) 525–542. Zbl1031.62030MR1986343
  59. [59] V. M. Zolotarev. One-Dimensional Stable Distributions. American Mathematical Society, Providence, 1986. Zbl0589.60015MR854867

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.