Connectivity bounds for the vacant set of random interlacements

Vladas Sidoravicius; Alain-Sol Sznitman

Annales de l'I.H.P. Probabilités et statistiques (2010)

  • Volume: 46, Issue: 4, page 976-990
  • ISSN: 0246-0203

Abstract

top
The model of random interlacements on ℤd, d≥3, was recently introduced in [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter u parametrizes the density of random interlacements on ℤd. In the present note we investigate connectivity properties of the vacant set left by random interlacements at level u, in the non-percolative regime u>u∗, with u∗ the non-degenerate critical parameter for the percolation of the vacant set, see [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints], [Comm. Pure Appl. Math.62 (2009) 831–858]. We prove a stretched exponential decay of the connectivity function for the vacant set at level u, when u>u∗∗, where u∗∗ is another critical parameter introduced in [Ann. Probab.37 (2009) 1715–1746]. It is presently an open problem whether u∗∗ actually coincides with u∗.

How to cite

top

Sidoravicius, Vladas, and Sznitman, Alain-Sol. "Connectivity bounds for the vacant set of random interlacements." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 976-990. <http://eudml.org/doc/241134>.

@article{Sidoravicius2010,
abstract = {The model of random interlacements on ℤd, d≥3, was recently introduced in [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter u parametrizes the density of random interlacements on ℤd. In the present note we investigate connectivity properties of the vacant set left by random interlacements at level u, in the non-percolative regime u&gt;u∗, with u∗ the non-degenerate critical parameter for the percolation of the vacant set, see [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints], [Comm. Pure Appl. Math.62 (2009) 831–858]. We prove a stretched exponential decay of the connectivity function for the vacant set at level u, when u&gt;u∗∗, where u∗∗ is another critical parameter introduced in [Ann. Probab.37 (2009) 1715–1746]. It is presently an open problem whether u∗∗ actually coincides with u∗.},
author = {Sidoravicius, Vladas, Sznitman, Alain-Sol},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {connectivity function; random interlacements; percolation},
language = {eng},
number = {4},
pages = {976-990},
publisher = {Gauthier-Villars},
title = {Connectivity bounds for the vacant set of random interlacements},
url = {http://eudml.org/doc/241134},
volume = {46},
year = {2010},
}

TY - JOUR
AU - Sidoravicius, Vladas
AU - Sznitman, Alain-Sol
TI - Connectivity bounds for the vacant set of random interlacements
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 976
EP - 990
AB - The model of random interlacements on ℤd, d≥3, was recently introduced in [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter u parametrizes the density of random interlacements on ℤd. In the present note we investigate connectivity properties of the vacant set left by random interlacements at level u, in the non-percolative regime u&gt;u∗, with u∗ the non-degenerate critical parameter for the percolation of the vacant set, see [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints], [Comm. Pure Appl. Math.62 (2009) 831–858]. We prove a stretched exponential decay of the connectivity function for the vacant set at level u, when u&gt;u∗∗, where u∗∗ is another critical parameter introduced in [Ann. Probab.37 (2009) 1715–1746]. It is presently an open problem whether u∗∗ actually coincides with u∗.
LA - eng
KW - connectivity function; random interlacements; percolation
UR - http://eudml.org/doc/241134
ER -

References

top
  1. [1] G. Grimmett. Percolation, 2nd edition. Springer, Berlin, 1999. Zbl0926.60004MR1707339
  2. [2] G. F. Lawler. Intersections of Random Walks. Birkhäuser, Basel, 1991. Zbl0925.60078MR1117680
  3. [3] V. Sidoravicius and A. S. Sznitman. Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math. 62 (2009) 831–858. Zbl1168.60036MR2512613
  4. [4] A. S. Sznitman. Vacant set of random interlacements and percolation. Ann. Math. To appear. Available at http://www.math.ethz.ch/u/sznitman/preprints. Zbl1202.60160MR2680403
  5. [5] A. S. Sznitman. Random walks on discrete cylinders and random interlacements. Probab. Theory Related Fields 145 (2009) 143–174. Zbl1172.60316MR2520124
  6. [6] A. S. Sznitman. Upper bound on the disconnection time of discrete cylinders and random interlacements. Ann. Probab. 37 (2009) 1715–1746. Zbl1179.60025MR2561432
  7. [7] A. Teixeira. On the uniqueness of the infinite cluster of the vacant set of random interlacements. Ann. Appl. Probab. 19 (2009) 454–466. Zbl1158.60046MR2498684
  8. [8] A. Teixeira. Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14 (2009) 1604–1627. Zbl1192.60108MR2525105
  9. [9] A. Teixeira. On the size of a finite vacant cluster of random interlacements with small intensity. Preprint. Available at http://www.math.ethz.ch/~teixeira/. Zbl1231.60117
  10. [10] D. Windisch. Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13 (2008) 140–150. Zbl1187.60089MR2386070
  11. [11] D. Windisch. Random walks on discrete cylinders with large bases and random interlacements. Ann. Probab. To appear. Available at arXiv:0907.1627. Zbl1191.60062MR2642893

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.