Connectivity bounds for the vacant set of random interlacements
Vladas Sidoravicius; Alain-Sol Sznitman
Annales de l'I.H.P. Probabilités et statistiques (2010)
- Volume: 46, Issue: 4, page 976-990
- ISSN: 0246-0203
Access Full Article
topAbstract
topHow to cite
topSidoravicius, Vladas, and Sznitman, Alain-Sol. "Connectivity bounds for the vacant set of random interlacements." Annales de l'I.H.P. Probabilités et statistiques 46.4 (2010): 976-990. <http://eudml.org/doc/241134>.
@article{Sidoravicius2010,
abstract = {The model of random interlacements on ℤd, d≥3, was recently introduced in [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter u parametrizes the density of random interlacements on ℤd. In the present note we investigate connectivity properties of the vacant set left by random interlacements at level u, in the non-percolative regime u>u∗, with u∗ the non-degenerate critical parameter for the percolation of the vacant set, see [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints], [Comm. Pure Appl. Math.62 (2009) 831–858]. We prove a stretched exponential decay of the connectivity function for the vacant set at level u, when u>u∗∗, where u∗∗ is another critical parameter introduced in [Ann. Probab.37 (2009) 1715–1746]. It is presently an open problem whether u∗∗ actually coincides with u∗.},
author = {Sidoravicius, Vladas, Sznitman, Alain-Sol},
journal = {Annales de l'I.H.P. Probabilités et statistiques},
keywords = {connectivity function; random interlacements; percolation},
language = {eng},
number = {4},
pages = {976-990},
publisher = {Gauthier-Villars},
title = {Connectivity bounds for the vacant set of random interlacements},
url = {http://eudml.org/doc/241134},
volume = {46},
year = {2010},
}
TY - JOUR
AU - Sidoravicius, Vladas
AU - Sznitman, Alain-Sol
TI - Connectivity bounds for the vacant set of random interlacements
JO - Annales de l'I.H.P. Probabilités et statistiques
PY - 2010
PB - Gauthier-Villars
VL - 46
IS - 4
SP - 976
EP - 990
AB - The model of random interlacements on ℤd, d≥3, was recently introduced in [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints]. A non-negative parameter u parametrizes the density of random interlacements on ℤd. In the present note we investigate connectivity properties of the vacant set left by random interlacements at level u, in the non-percolative regime u>u∗, with u∗ the non-degenerate critical parameter for the percolation of the vacant set, see [Vacant set of random interlacements and percolation. Available at http://www.math.ethz.ch/u/sznitman/preprints], [Comm. Pure Appl. Math.62 (2009) 831–858]. We prove a stretched exponential decay of the connectivity function for the vacant set at level u, when u>u∗∗, where u∗∗ is another critical parameter introduced in [Ann. Probab.37 (2009) 1715–1746]. It is presently an open problem whether u∗∗ actually coincides with u∗.
LA - eng
KW - connectivity function; random interlacements; percolation
UR - http://eudml.org/doc/241134
ER -
References
top- [1] G. Grimmett. Percolation, 2nd edition. Springer, Berlin, 1999. Zbl0926.60004MR1707339
- [2] G. F. Lawler. Intersections of Random Walks. Birkhäuser, Basel, 1991. Zbl0925.60078MR1117680
- [3] V. Sidoravicius and A. S. Sznitman. Percolation for the vacant set of random interlacements. Comm. Pure Appl. Math. 62 (2009) 831–858. Zbl1168.60036MR2512613
- [4] A. S. Sznitman. Vacant set of random interlacements and percolation. Ann. Math. To appear. Available at http://www.math.ethz.ch/u/sznitman/preprints. Zbl1202.60160MR2680403
- [5] A. S. Sznitman. Random walks on discrete cylinders and random interlacements. Probab. Theory Related Fields 145 (2009) 143–174. Zbl1172.60316MR2520124
- [6] A. S. Sznitman. Upper bound on the disconnection time of discrete cylinders and random interlacements. Ann. Probab. 37 (2009) 1715–1746. Zbl1179.60025MR2561432
- [7] A. Teixeira. On the uniqueness of the infinite cluster of the vacant set of random interlacements. Ann. Appl. Probab. 19 (2009) 454–466. Zbl1158.60046MR2498684
- [8] A. Teixeira. Interlacement percolation on transient weighted graphs. Electron. J. Probab. 14 (2009) 1604–1627. Zbl1192.60108MR2525105
- [9] A. Teixeira. On the size of a finite vacant cluster of random interlacements with small intensity. Preprint. Available at http://www.math.ethz.ch/~teixeira/. Zbl1231.60117
- [10] D. Windisch. Random walk on a discrete torus and random interlacements. Electron. Commun. Probab. 13 (2008) 140–150. Zbl1187.60089MR2386070
- [11] D. Windisch. Random walks on discrete cylinders with large bases and random interlacements. Ann. Probab. To appear. Available at arXiv:0907.1627. Zbl1191.60062MR2642893
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.