Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of
Rendiconti del Seminario Matematico della Università di Padova (2010)
- Volume: 124, page 185-196
- ISSN: 0041-8994
Access Full Article
topHow to cite
topTralli, Giulio. "Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb {C}^2$." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 185-196. <http://eudml.org/doc/241303>.
@article{Tralli2010,
author = {Tralli, Giulio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Reinhardt domain; Levi curvature},
language = {eng},
pages = {185-196},
publisher = {Seminario Matematico of the University of Padua},
title = {Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb \{C\}^2$},
url = {http://eudml.org/doc/241303},
volume = {124},
year = {2010},
}
TY - JOUR
AU - Tralli, Giulio
TI - Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb {C}^2$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 185
EP - 196
LA - eng
KW - Reinhardt domain; Levi curvature
UR - http://eudml.org/doc/241303
ER -
References
top- [1] J. G. Hounie - E. Lanconelli, An Alexandrov type theorem for Reinhardt domains of , Contemporary Math., 400 (2006), pp. 129--146. Zbl1102.32001
- [2] J. G. Hounie - E. Lanconelli, A sphere theorem for a class of Reinhardt domains with constant Levi curvature, Forum Math., 20 (2008), pp. 571--586. Zbl1221.53016MR2431495
- [3] S. G. Krantz, Function theory of several complex variables, Wiley, New York, 1982. Zbl0471.32008MR635928
- [4] V. Martino - A. Montanari, Integral formulas for a class of curvature PDE's and applications to isoperimetric inequalities and to symmetry problems, Forum Math, 22 (2010), pp. 255--267. Zbl1198.32016MR2607564
- [5] A. Montanari - E. Lanconelli, Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems, J. Differential Equations, 202 (2004), pp. 306--331. Zbl1161.35414MR2068443
- [6] R. Monti - D. Morbidelli, Levi umbilical surfaces in complex space, J. Reine Angew. Math., 603 (2007), pp. 113--131. Zbl1117.32022MR2312555
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.