Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of 2

Giulio Tralli

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 124, page 185-196
  • ISSN: 0041-8994

How to cite

top

Tralli, Giulio. "Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb {C}^2$." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 185-196. <http://eudml.org/doc/241303>.

@article{Tralli2010,
author = {Tralli, Giulio},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Reinhardt domain; Levi curvature},
language = {eng},
pages = {185-196},
publisher = {Seminario Matematico of the University of Padua},
title = {Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb \{C\}^2$},
url = {http://eudml.org/doc/241303},
volume = {124},
year = {2010},
}

TY - JOUR
AU - Tralli, Giulio
TI - Levi curvature with radial symmetry : a sphere theorem for bounded Reinhardt domains of $\mathbb {C}^2$
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 185
EP - 196
LA - eng
KW - Reinhardt domain; Levi curvature
UR - http://eudml.org/doc/241303
ER -

References

top
  1. [1] J. G. Hounie - E. Lanconelli, An Alexandrov type theorem for Reinhardt domains of 2 , Contemporary Math., 400 (2006), pp. 129--146. Zbl1102.32001
  2. [2] J. G. Hounie - E. Lanconelli, A sphere theorem for a class of Reinhardt domains with constant Levi curvature, Forum Math., 20 (2008), pp. 571--586. Zbl1221.53016MR2431495
  3. [3] S. G. Krantz, Function theory of several complex variables, Wiley, New York, 1982. Zbl0471.32008MR635928
  4. [4] V. Martino - A. Montanari, Integral formulas for a class of curvature PDE's and applications to isoperimetric inequalities and to symmetry problems, Forum Math, 22 (2010), pp. 255--267. Zbl1198.32016MR2607564
  5. [5] A. Montanari - E. Lanconelli, Pseudoconvex fully nonlinear partial differential operators: strong comparison theorems, J. Differential Equations, 202 (2004), pp. 306--331. Zbl1161.35414MR2068443
  6. [6] R. Monti - D. Morbidelli, Levi umbilical surfaces in complex space, J. Reine Angew. Math., 603 (2007), pp. 113--131. Zbl1117.32022MR2312555

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.