Stability of tautological vector bundles on Hilbert squares of surfaces

Ulrich Schlickewei

Rendiconti del Seminario Matematico della Università di Padova (2010)

  • Volume: 124, page 127-138
  • ISSN: 0041-8994

How to cite

top

Schlickewei, Ulrich. "Stability of tautological vector bundles on Hilbert squares of surfaces." Rendiconti del Seminario Matematico della Università di Padova 124 (2010): 127-138. <http://eudml.org/doc/241330>.

@article{Schlickewei2010,
author = {Schlickewei, Ulrich},
journal = {Rendiconti del Seminario Matematico della Università di Padova},
keywords = {Hilbert scheme; stable vector bundle},
language = {eng},
pages = {127-138},
publisher = {Seminario Matematico of the University of Padua},
title = {Stability of tautological vector bundles on Hilbert squares of surfaces},
url = {http://eudml.org/doc/241330},
volume = {124},
year = {2010},
}

TY - JOUR
AU - Schlickewei, Ulrich
TI - Stability of tautological vector bundles on Hilbert squares of surfaces
JO - Rendiconti del Seminario Matematico della Università di Padova
PY - 2010
PB - Seminario Matematico of the University of Padua
VL - 124
SP - 127
EP - 138
LA - eng
KW - Hilbert scheme; stable vector bundle
UR - http://eudml.org/doc/241330
ER -

References

top
  1. [D] G. Danila, Sur la cohomologie d'un fibré tautologique sur le schéma de Hilbert d'une surface, J. Alg. Geom., 10 (2001), pp. 247--280. Zbl0988.14011MR1811556
  2. [Fo] J. Fogarty, Algebraic families on an algebraic surface, Am. J. Math., 90 (1968), pp. 511--521. Zbl0176.18401MR237496
  3. [Fu] W. Fulton, Intersection theory, Erg. Math., 3. Folge, Band 2, 2nd ed., Springer (1998). Zbl0541.14005MR1644323
  4. [G] A. Grothendieck, Sur quelques points d'algèbre homologique, Tôhoku Math. J., 9 (1957), pp. 119--221. Zbl0118.26104MR102537
  5. [GHJ] D. Joyce - D. Huybrechts - M. Gross, Calabi-Yau manifolds and related geometries, Universitext, Springer (2002). Zbl1001.00028MR1963559
  6. [HL] D. Huybrechts - M. Lehn, The geometry of moduli spaces of sheaves, Cambridge Math. Libr., 2nd ed., Cambridge University Press (2010). Zbl1206.14027MR2665168
  7. [Ma] E. Markman, On the monodromy of moduli spaces of sheaves on K 3 surfaces, J. Alg. Geom., 17 (2008), pp. 29--99. Zbl1185.14015MR2357680
  8. [Mi] E. Mistretta, Some constructions around stability of vector bundles on projective varieties, PhD Thesis, Univ. Paris VII (2006). 
  9. [Mu] S. Mukai, On the moduli space of bundles on a K 3 surface, In: Vector Bundles on Algebraic Varieties, Oxford University Press (1987), pp. 341--413. Zbl0674.14023MR893604
  10. [OG] K. O'Grady, The weight two Hodge structure of moduli spaces of sheaves on a K3 surface, J. Alg. Geom., 4 (1997), pp. 599--644. Zbl0916.14018MR1487228

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.